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Abstract 

Background: DNA shape analysis has demonstrated the potential to reveal structure‑based mechanisms of pro‑
tein–DNA binding. However, information about the influence of chemical modification of DNA is limited. Cytosine 
methylation, the most frequent modification, represents the addition of a methyl group at the major groove edge 
of the cytosine base. In mammalian genomes, cytosine methylation most frequently occurs at CpG dinucleotides. In 
addition to changing the chemical signature of C/G base pairs, cytosine methylation can affect DNA structure. Since 
the original discovery of DNA methylation, major efforts have been made to understand its effect from a sequence 
perspective. Compared to unmethylated DNA, however, little structural information is available for methylated DNA, 
due to the limited number of experimentally determined structures. To achieve a better mechanistic understanding of 
the effect of CpG methylation on local DNA structure, we developed a high‑throughput method, methyl‑DNAshape, 
for predicting the effect of cytosine methylation on DNA shape.

Results: Using our new method, we found that CpG methylation significantly altered local DNA shape. Four DNA 
shape features—helix twist, minor groove width, propeller twist, and roll—were considered in this analysis. Distinct 
distributions of effect size were observed for different features. Roll and propeller twist were the DNA shape features 
most strongly affected by CpG methylation with an effect size depending on the local sequence context. Methyla‑
tion‑induced changes in DNA shape were predictive of the measured rate of cleavage by DNase I and suggest a pos‑
sible mechanism for some of the methylation sensitivities that were recently observed for human Pbx‑Hox complexes.

Conclusions: CpG methylation is an important epigenetic mark in the mammalian genome. Understanding its role 
in protein–DNA recognition can further our knowledge of gene regulation. Our high‑throughput methyl‑DNAshape 
method can be used to predict the effect of cytosine methylation on DNA shape and its subsequent influence on 
protein–DNA interactions. This approach overcomes the limited availability of experimental DNA structures that con‑
tain 5‑methylcytosine.

Keywords: methyl‑DNAshape, 5‑methylcytosine, DNA methylation, Epigenetics, DNA structure, DNase I cleavage 
sensitivity, Human Hox protein binding specificity

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Epigenetics & Chromatin

*Correspondence:  hjb2004@columbia.edu; rohs@usc.edu 
1 Computational Biology and Bioinformatics Program, Department 
of Biological Sciences, University of Southern California, Los Angeles, CA 
90089, USA
2 Department of Biological Sciences, Columbia University, New York, NY 
10027, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1752-1884
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13072-018-0174-4&domain=pdf


Page 2 of 11Rao et al. Epigenetics & Chromatin  (2018) 11:6 

Background
Cytosine methylation is the most abundant of all epige-
netic marks found on DNA. At the molecular level, cyto-
sine methylation involves the addition of a methyl  (CH3) 
group to the C5 atom of cytosine, yielding 5-methylcyto-
sine (5mC). In mammalian genomes, this alteration often 
occurs in the context of the CpG dinucleotide and is 
referred to as “CpG methylation” or “DNA methylation.” 
Ever since 5mC was proposed as a potential epigenetic 
factor capable of altering gene regulation and cellular 
differentiation [1], research in this field has been quite 
active. A recent review [2] highlights the complexity in 
the interpretation of epigenetic data and the evolution of 
the definition of epigenetics as the field has advanced.

Although the addition of a single methyl group at 
the major groove edge leads to only a subtle change 
in DNA structure, important functional effects have 
been observed at different scales. For example, methyl-
ation-induced alterations in gene expression have been 
observed in regulatory regions [3–5], and an increase 
in DNA methylation in one of the X-chromosomes in 
the female genome can lead to X-chromosome inactiva-
tion [6, 7]. Effects of methylation have been studied in 
two main contexts, genome organization and protein–
DNA interactions. Owing to recent advances in technol-
ogy, DNA methylation profiling can now be performed 
for any given genome [8–10]. Furthermore, in  vitro 
approaches have recently been used to profile system-
atically the influence of methylation on DNA binding 
for human transcription factors (TFs) [11–14], by using 
variants of universal protein-binding microarray (PBM), 
high-throughput systematic evolution of ligands by expo-
nential enrichment (HT-SELEX), and SELEX in combi-
nation with massively parallel sequencing (SELEX-seq). 
These approaches revealed that methylation affects bind-
ing across the affinity range and that the effect varies 
within and between TF families [13, 15–17].

To achieve mechanistic insights into these phenomena, 
detailed understanding of the biophysical and structural 
effects of DNA methylation is required. Some proteins, 
such as the Lac repressor, prefer having a bulky methyl 
group in the major groove and form hydrophobic con-
tacts to this group [18]. By contrast, MspI, a Moraxella 
sp. restriction endonuclease, recognizes the CCGG 
sequence irrespective of methylation status [18]. These 
context-dependent effects may be explained in terms 
of three possible readout mechanisms: direct contacts 
[19], competitive binding [20, 21], and structural read-
out [22]. Direct contact to a methyl group allows for the 
possible formation or alteration of van der Waals inter-
actions, which can either completely abolish or enhance 
binding [19, 23]. For example, CpG methylation of the 
cyclic adenosine monophosphate (cAMP) response 

element half-site (half-CRE) confers binding of CCAAT/
enhancer-binding protein alpha (C/EBPα) and C/EBPβ 
and abolishes binding of CREB, c-Jun, JunD, and ATF2 
[24]. In a competitive binding mechanism, the methyl-
CpG binding protein (MeCP2) initially binds methyl-
ated CpG sites and then blocks sites for other proteins to 
bind [20, 21]. Many TFs seem to employ one of these first 
two mechanisms, as revealed by in  vitro binding assays 
[23]. In the case of structure-mediated methylation sen-
sitivity, first demonstrated for the endonuclease DNase I 
[25], local DNA shape changes enhance binding to target 
sites already preferred by particular DNA-binding pro-
teins. While direct contacts with the methyl group con-
fer binary effects, the shape-dependent effect is sequence 
context dependent and can fine-tune the binary direct 
contact mechanism.

Here, we introduce a methodology that enables quan-
titative probing of the shape-dependent methylation 
effect. We recently studied how DNA shape contributes 
to protein–DNA recognition [26–28]. However, we have 
not yet systematically quantified the effect of DNA meth-
ylation on protein binding [22]. Motivated by the wide-
spread occurrence of CpG dinucleotides in TF binding 
motifs of different protein families [29–31], we aimed 
to study CpG methylation in the context of gene regu-
lation (Fig.  1b). Understanding the protein–DNA read-
out of methylated cytosine requires structural insight 
derived from experimentally determined structures. 
Unfortunately, the current content of the Protein Data 
Bank (PDB) [32] includes only a few structures contain-
ing cytosine modifications (Fig. 1a). To close this knowl-
edge gap, we utilized computational modeling of many 
DNA fragments to study the intrinsic effects induced by 
cytosine methylation, in a manner analogous to previous 
high-throughput studies of DNA shape of unmethylated 
genomic regions [33–35]. The resulting query tables can 
be utilized to analyze systematically the effect of meth-
ylation on protein–DNA interactions, as we demonstrate 
for DNase I cleavage and Pbx-Hox binding data.

Methods
Sequence and structure datasets
A total of 3518 DNA fragments of lengths varying from 
13 to 24 base pairs (bp) were considered in all-atom 
Monte Carlo (MC) simulations, based on a previously 
published protocol (see Additional file  1 for details) 
[36]. Before performing simulations, we added 5-methyl 
groups at CpG steps to the core sequence (central regions 
in sequences in Additional file  2: Table S1) of every 
DNA fragment [25]. Sequences of these fragments were 
designed to capture the complete pentamer space in 
terms of the sequence context. Each considered sequence 
was defined as having at least one CpG step. For better 
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coverage of the sequence space, four different nucleotide 
combinations were used to flank each designed sequence. 
Canonical B-DNA structures for all DNA fragments were 
generated by the JUMNA program [37] and used as input 
for the all-atom MC simulations [36].

All‑atom MC simulations
MC simulations (Fig.  2c) traverse the energy landscape 
by making random moves [38], thus combining effec-
tive sampling with fast equilibration [39]. For this study, 
MC sampling was expanded to include 5mC. Rotation 
of the 5-methyl group added one degree of freedom, 
whose rotation was implemented in a manner analogous 
to that of the thymine 5-methyl group. Partial charges 
for 5mC were taken from a database of AMBER force 
fields for naturally occurring modified nucleotides [25, 
40]. For a given DNA structure, the MC simulation pro-
tocol included two million MC cycles, with each cycle 
attempting random variations of all degrees of freedom 
(Additional file 3: Table S2). After completion of the MC 
simulations, trajectories were analyzed by using snap-
shots that were stored every 100 MC cycles. After we 
discarded the first half-million MC cycles as an equilibra-
tion period, we mined the remaining trajectories using 
CURVES analysis [41] (Fig.  2d; see Additional file  1 for 
detailed description of methodology).

Building the methyl‑DNAshape Pentamer Query Table
Mining of the MC trajectories generates average struc-
tural features for a given sequence. We assigned minor 

groove width (MGW) values to nucleotides in a strand-
independent manner [33]. We adopted a pentamer slid-
ing-window approach to record DNA shape feature values 
from representative structures. For a given sequence of 
length N, the approach profiled the shape features of 
N − 4 pentamers due to end effects. For MGW and pro-
peller twist (ProT), values were assigned to the central bp 
of the corresponding pentamer. For Roll and helix twist 
(HelT), two values were recorded for bp steps 2–3 and 
3–4 of a pentamer, respectively. Shape feature values from 
multiple occurrences of a given pentamer in different 
DNA fragments were averaged and assigned as represent-
ative values for that pentamer (Additional file 4: Fig. S1).

All possible pentamers were categorized in unmethyl-
ated and methylated groups. Unmethylated pentamers 
contained letters from the standard DNA alphabet, {A, 
C, G, T}. Methylated pentamers contained letters from 
the expanded alphabet, {A, C, G, T, m, g}. We assigned 
the letter “m” to 5mC and lowercase “g” to guanine 
base-paired with 5mC. We considered there to be no 
partial methylation; thus, for a DNA fragment of length 
N, methylation on the forward strand at index i (5′–3′) 
also indicates methylation at index i +  1 (3′–5′) on the 
reverse strand. The G base-paired to 5mC in a methyl-
ated 5mC/G bp cannot be treated in a similar fashion as 
G base-paired to unmethylated C. In addition, due to the 
requirement of DNA methylation at both Cs of a CpG 
step, each 5mC will be followed by a G base-paired to 
another 5mC on the opposite strand. Thus, “m” and “g” 
cannot be considered as independent letters.

Fig. 1 Current statistics of available structures and abundance of CpG dinucleotides in TF binding sites. a Count statistics of protein–DNA complex 
and unbound DNA structures available in the PDB as of 31 May 2017. Counts of subsets of structures (right two bars) containing methylated DNA 
at CpG site(s) or in other sequence contexts were two orders of magnitude lower than the count of structures containing unmethylated DNA. Sys‑
tematic profiling of the effect of methylation on three‑dimensional DNA structure would require a substantially larger number of structures. Counts 
include structures solved by X‑ray crystallography and NMR spectroscopy. b Abundance of CpG steps in TF binding motifs in HT‑SELEX data for 
human TF datasets [29], derived using MotifDb [51]. CpG dinucleotides can be observed in binding sites irrespective of TF family. Five largest human 
TF families (based on number of binding sites containing at least one CpG step) are specified. Almost 90% of ETS family motifs contain CpG steps. 
Numbers on each bar represent counts of motifs containing CpG or no CpG steps
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Introduction of the two letters “m/g” for a 5mC/G bp 
increased the number of possible unique pentamers, 
with 475 new pentamers being added to the 512 unique 
pentamers representing unmethylated DNA (Additional 
file 5: Table S3). Here, we discuss two specific examples. 
In the first example, NNmgN where N ∈ {A, C, G, T} has 
a single methylation mark at the underlined position 3. 
The second example is the complex case of gmgNm. To 
assign shape feature values, we have to consider that 5mC 
precedes “g” on its 5′ flank and that “g” follows “m” on its 
3′ flank (Additional file  6: Fig. S2). We ran MC simula-
tions with these combinations of methylated CpG steps 
to enrich pentamers of these types of compositions (see 
Additional file 7 for list of all sequences studied with MC 
simulations).

methyl‑DNAshape method for high‑throughput prediction 
of methylated DNA shape features
The methyl-DNAshape method derives DNA shape fea-
tures of methylated DNA at nucleotide resolution, while 
considering the local sequence context. In a manner anal-
ogous to our DNAshape method for unmethylated DNA 
[33], we used a pentamer centered at position i to estimate 
DNA shape features at that position. We adopted the equiv-
alent approach for DNA with methylated CpG dinucleo-
tides, to capture the methylation properties of mammalian 
genomes. We derived the methyl-DNAshape Pentamer 
Query Table (mPQT), in analogy to the DNAshape Pen-
tamer Query Table (PQT). DNA shape features at nucleo-
tide position i were determined by querying the mPQT 
based on a pentamer using two neighboring nucleotides in 

Fig. 2 Workflow for high‑throughput methyl‑DNAshape method. a Sequence pool. DNA fragments were considered for MC simulations to capture 
a sequence space that includes CpG methylation. Published sequences (left rectangular box) [23] and manually designed sequences (right rectan‑
gular box) included DNA fragments comprising a variable core (containing at least one methylated CpG step, called “mg” step) and flanks (4 bp in 
length). Right flanks were reverse complements of left flanks. For a given length of core sequence (5, 6, or 7 bp), all possible sequences (Additional 
file 1) were considered for MC simulations. b Seed structures. Canonical B‑DNA structures were generated for all selected sequences. The 5‑methyl 
groups (orange circles) were introduced at cytosine positions with letter “m” (on Watson and Crick strand). c All‑atom MC trajectories. Simulations 
were performed on seed structures for 2 million MC cycles, with snapshots recorded every 100 cycles after equilibration. d Mining trajectories. 
Recorded snapshots were analyzed for DNA shape features (see Additional file 1: Supplementary methods) associated with corresponding DNA 
sequences. e Pentamer Query Table (PQT). Pentamer sliding‑window approach was applied to analyzed DNA fragments. Calculated DNA shape 
features (HelT, MGW, ProT, and Roll) were recorded at the center of each pentamer. Assigned value for a corresponding shape feature represents the 
average of all shape feature values in the sequence pool for a given pentamer in the PQT. f Front‑end interface. Our easy‑to‑use methyl‑DNAshape 
web server or DNAshapeR Bioconductor/R package can be used to profile shape features of any genomic region and DNA sequences of any length 
by using a pentamer sliding‑window approach. The methyl‑DNAshape web server, available at http://rohslab.usc.edu/methyl‑DNAshape/, also 
outputs the effect of methylation on shape features in terms of Δshape (shown here for MGW)

http://rohslab.usc.edu/methyl-DNAshape/
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both flanks  (Pi =  Ni-2Ni-1NiNi+1Ni+2). Ultimately, methyl-
DNAshape calculates four feature vectors, one for each of 
the shape features HelT, MGW, ProT, and Roll (Fig. 2).

As in our previous work, we selected four DNA shape 
features that play important roles in protein–DNA recog-
nition [33]. ProT is an intra-bp parameter that accounts 
for bp twisting along the base-pairing axis. Increased 
values of ProT lead to an opportunity to form an addi-
tional inter-bp hydrogen bond in the major groove [28]. 
Roll and HelT are bp step features that estimate deforma-
tion at the dinucleotide level. The MGW feature plays a 
pivotal role in DNA shape readout [27]. A narrow minor 
groove enhances negative electrostatic potential and 
offers favorable interactions for positively charged amino 
acids [27]. Although the scarcity of experimentally solved 
structures with CpG methylation prohibited us from 
performing a validation such as is possible for unmeth-
ylated structures, we compared MGW predictions 
using methyl-DNAshape with X-ray co-crystal struc-
tures (Additional file  8: Fig. S3). The methyl-DNAshape 
method is available as a web server at http://rohslab.usc.
edu/methyl-DNAshape/ and as an extension to the R/
Bioconductor package DNAshapeR [42] at http://biocon-
ductor.org/packages/devel/bioc/html/DNAshapeR.html.

Results and discussion
Effect of CpG methylation on DNA shape features
To quantify the effects of cytosine methylation on DNA 
shape features, we compared values for all unique pen-
tamers that contained a single CpG step, as derived from 
DNAshape [33] (designed for unmethylated DNA) and 
methyl-DNAshape (our high-throughput prediction 
method designed for methylated DNA; see “Methods” 
section). We considered four DNA shape features—HelT, 
MGW, ProT, and Roll—in this analysis.

Roll and ProT exhibited strong methylation effects (50–
100% of the range observed across all unmethylated-DNA 
sequences). At methylated CpG steps, Roll increased by 
an average of 6° (range 5.1°–7.2°), representing a similar 
effect size as previously observed in molecular dynamics 
simulations [43]. In methylated C/G bp, ProT decreased 
by an average of 5° (range − 4.5° to − 6.0°). By contrast, 
we observed relatively small effects for MGW and HelT 
(Fig. 3). An increase in Roll caused partial unstacking of 
the bp step, leading to widening of the minor groove. This 
conformational change might affect hydrogen bond for-
mation in the major groove by exposing amino groups of 
guanine bases and oxygens of cytosine bases with differ-
ent relative orientations. Presence of a methylated CpG 

Fig. 3 Effect size of CpG methylation on DNA shape features. Methylation‑induced changes were analyzed for four shape features: a, e roll, b, f pro‑
peller twist (ProT), c, g helix twist (HelT), d, h minor groove width (MGW). For each shape feature, values for pentamers from the DNAshape query 
table for unmethylated DNA were plotted against values for corresponding pentamers from the methyl‑DNAshape query table for methylated DNA. 
For simplicity, pentamers with one and only one CpG/mpg step (where “m” represents 5‑methylcytosine and “g” represents G base‑paired with “m” 
on the reverse‑complement strand) were considered, for a total of 116 occurrences (Additional file 1). For bp step features Roll and HelT, values at 
bp steps 2–3 of each pentamer were used. For MGW and ProT, values at the central bp of each pentamer were used. CpG methylation increased Roll 
by an order of magnitude (light‑orange dots). The opposite was observed when methylation occurred at the immediate next bp step (light‑blue 
dots). Presence of a methyl group at the central bp, either on the forward (light‑blue dots) or reverse (light‑orange dots) strand caused a decrease in 
ProT

http://rohslab.usc.edu/methyl-DNAshape/
http://rohslab.usc.edu/methyl-DNAshape/
http://bioconductor.org/packages/devel/bioc/html/DNAshapeR.html
http://bioconductor.org/packages/devel/bioc/html/DNAshapeR.html
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step at position 1 or 3 (in the 5′–3′ direction) in pentam-
ers resulted in a lowering of HelT by ~ 2° (Fig. 3c). Only 
subtle changes in MGW were observed, except for some 
particular sequence contexts.

Effect of CpG methylation on MGW of A‑tracts
A-tracts, or poly[A/T] tracts, consist of a continuous run 
of at least three As or Ts without any TpA step. A-tracts, 
which play an important role in TF-DNA binding [44, 
45], have a rigid conformation due to inter-bp hydrogen 
bonds in the major groove [46].

We analyzed the effect of methylation on the MGW of 
A-tracts flanked by CpG steps. As we derived the shape 
features from pentamers, we considered A-tracts of lim-
ited length of either three (e.g., AAACG; Fig. 4a) or four 
(e.g., AAAAC; Fig.  4b) nucleotides. For A-tracts that 
were three bp in length, the subsequent CpG context 
extended into one nucleotide position flanking the pen-
tamer because 5mC at the fifth position of a pentamer 
implicitly assumes a G/5mC bp at the following position. 
Box plot analysis revealed that the observed narrowing 
or widening of the minor groove upon CpG methylation 
depended on the sequence composition of As and Ts in 
the A-tract. For example, consecutive mutation from A 
to T in AAAAC led to a bell-shaped MGW profile, due to 
the introduction of a flexible TpA “hinge” step [47]. Max-
imal narrowing of the minor groove upon CpG methyla-
tion was observed for AATTC (Fig. 4b). This result might 
be due to the fact that this particular A-tract had a nar-
row minor groove, an effect that was amplified through 

cytosine methylation in the adjacent CpG step. Effects 
of DNA methylation on MGW were larger and more 
variable for 4-bp than for 3-bp A-tracts. This result was 
likely due to the more distinct minor groove narrowing of 
longer A-tracts and suggests that the methylation effect 
can be amplified depending on the A-tract features of the 
surrounding sequence.

Bulky methyl groups introduced by CpG methylation 
subtly widened the major groove and, in turn, narrowed 
the minor groove [22]. This observation can be explained 
in part by the proximity to the phosphate backbone of 
the methyl group of 5mC [22]. Narrowing of the minor 
groove enhances the negative electrostatic potential and, 
thereby, attracts minor groove-binding basic side chains 
more efficiently [22, 25]. This mechanism could poten-
tially be employed when A-tracts reside in vicinity of 
CpG dinucleotides, as previously reported for various 
methyl group-binding proteins that use arginine-carrying 
AT-hooks [48] to recognize A-tracts adjacent to a CpG-
containing motif [11].

Application of methyl‑DNAshape predictions: modeling 
of DNase I cleavage activity
The DNA shape-dependent mechanism by which DNase 
I cleaves naked genomic DNA [22] serves as appropri-
ate test system for assessing the functional relevance of 
our predictions of methylation-induced shape changes. 
In particular, the hexamer-based model (3-bp up- or 
downstream of the phosphate cleavage site) explained 
most of the variance in cleavage rates (Additional file 9: 

Fig. 4 Effect of CpG methylation on minor groove width (MGW) of adjacent A‑tracts. a MGW values at the central nucleotide of 3‑bp A‑tracts, 
which are shown from AAACG to TTTCG with an exchange of one bp (A/T to T/A) from the 3′ end. Methylation did not decrease MGW at the central 
bp, except in the ATTCG sequence. Wilcoxon test P values were calculated for methylation narrowing the minor groove at the central nucleotide as 
the alternative hypothesis (*0.01 < P value ≤ 0.05; **0.001 < P value ≤ 0.01). Four A‑tracts followed by a CpG step at the 3′ end include A‑tracts pre‑
ceded by a CpG step at the 5′ end because of symmetry in sequence and cytosine methylation. b MGW at the central nucleotide of 4‑bp A‑tracts 
follows a bell‑shaped curve from AAAAC to TTTTC. One bp at a time was exchanged from A/T to T/A, starting at the 3′ end. Paired t test P values 
were calculated for methylation narrowing the minor groove at the central bp as the alternative hypothesis. Two pentamers, AATTC and ATTTC, 
showed significant P values, meaning that methylation narrowed the minor groove. MC simulations were performed on longer DNA fragments 
containing hexamer sequences with a CpG/mpg bp step at position 5, and MGW values were measured at the central position 3
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Table S4; Additional file  10: Table S5). Enhanced cleav-
age by DNase I was observed for hexamers containing a 
CpG step at the + 1/+ 2 positions (referred to as  C+1G+2 
or positions 4 and 5 in a hexamer from the 5′ direction) 
immediately adjacent to the central cleavage site (Fig. 5a).

To assess how methylation-induced shape changes 
relate to the binding free energy (ΔΔG/RT) of DNase 
I, we developed shape-based statistical models for 
unmethylated DNA (Fig.  5b). We used hexamers with 
an observed cleavage count of at least 25 to build our 

predictive models (Additional file 1). Next, we evaluated 
how well the resulting linear model predicted the effect 
of methylation on DNase I binding/cleavage (ΔΔΔG/R
T =  ΔΔG/RTmethylated −  ΔΔG/RTunmethylated) in terms of 
the effect of methylation on shape (Δshape = shapemethyl-

ated − shapeunmethylated) (Additional file 1).
To evaluate the predictive power of each individual 

shape feature, we trained models based on each shape 
feature category and plotted the predicted ΔΔG shift 
against the maximum observed ΔΔG shift for a  C+1G+2 

Fig. 5 Modeling of methylation‑induced shifts in cleavage rates using methylation‑induced shifts in shape feature profile. a Points on plot repre‑
sent inferred binding free energy (ΔΔG/RT) values of DNase I to unmethylated hexamers and corresponding methylated hexamers with absolute 
phosphate cleavage count ≥ 25. Methylation‑induced effects are shown for sequences with  C+1G+2 offset. Shift (downward) from diagonal 
indicates log‑fold increase in cleavage activity of DNase I for methylated hexamers. b Shape‑to‑affinity modeling and use of methyl‑DNAshape 
features. Shape‑to‑affinity model (L1‑ and L2‑regularized linear regression model) built using unmethylated data. DNA shape features for unmethyl‑
ated hexamers and their corresponding free energies (ΔΔG/RT) were used as predictors and response variables, respectively. The model used the 
methylation effects on shape features (Δshape) calculated by methyl‑DNAshape to predict ΔΔΔG (methylation effects on free energy, indicated by 
ΔΔΔĜ). Linearity of the model allowed direct use of Δshape as input variable. Roll values are shown for illustration purposes. c Predictive powers of 
different shape‑based models. Observed ΔΔΔG/RT with median around − 2 is shown in gray colored box. Roll‑based model accurately predicts the 
cleavage bias for  C+1G+2 offset
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offset (Fig.  5c). The Roll-based model better explained 
the shift than models based on other shape features. This 
observation may reflect the causal effect of the influence 
of methylation on DNA shape features (Fig. 3).

We observed an enhanced negative value (− 0.187) at 
the + 1/+ 2 offset in the weight vector W (Fig. 5b) of the 
Roll-based model. This finding suggested that the meth-
ylation-induced increase in Roll at this CpG offset caused 
a decrease in ΔΔG and, thus, an increase in binding affin-
ity. For the  C+1G+2 offset, the observed ΔΔG shift was 
well predicted by the change in Roll (Fig.  5c and Addi-
tional file 1). Compared to earlier work that was limited 
to MC simulations of a restricted set of methylated-DNA 
fragments [25], the methyl-DNAshape approach pre-
sented here enables systematic probing of the methyla-
tion effect for any CpG offset, number of sequences, or 
entire genomes.

CpG methylation effects on DNA binding of human 
Pbx‑Hox complexes
In previous reports, SELEX-seq profiling followed by 
DNA shape analyses of binding by heterodimers of all 
eight Drosophila melanogaster Hox proteins in com-
plex with their common co-factor Extradenticle (Exd) 
revealed an important role for MGW readout [26, 49]. 
More recently, an extension of the SELEX-seq method 
for methylated binding sites, EpiSELEX-seq, revealed 
that cytosine methylation modulates the affinity with 
which human orthologs (Pbx-Hox) of these heterodi-
mers bind to CpG dinucleotide-containing sites [13]. The 
DNA sequences associated with the largest binding affin-
ity for the Exd-Hox and Pbx-Hox complexes matched 
the 12-bp sequence pattern NTGAYNNAYNNN, where 
Y represents pyrimidine (C or T) and N any nucleotide 
(Fig. 6a).

As previously reported [13], direct comparison of the 
relative binding affinities for unmethylated versus meth-
ylated sequences (Fig.  6b, c) shows that cytosine meth-
ylation can either have a stabilizing or destabilizing effect 
on Pbx-Hox binding, depending on the position of the 
CpG dinucleotide within the binding site. For example, 
methylation of a CpG dinucleotide at offset 6/7 (NTGAY-
CGAYNNN;  C6G7; green points/box in Fig.  6b, c) and 
offset 10/11 (NTGAYNNAYCGN;  C10G11; blue points/
box in Fig.  6b, c) suppresses binding, whereas methyla-
tion at offset 9/10 (NTGAYNNACGNN;  C9G10; magenta 
points/box in Fig. 6b, c) enhances binding by an order of 
magnitude. We previously proposed a plausible mecha-
nism for the latter stabilizing effect, which we postulated 
to involve direct contacts to the methyl group in the 
major groove [13]. However, an explanation of the sup-
pressed binding at the CpG offsets 6/7 and 10/11 was 
lacking (Fig. 6a).

No protein–DNA contact was observed in the co-
crystal structure (PDB ID: 1PUF) [50] at offset 6/7. How-
ever, the nucleotides at offset 6/7 form a spacer located 
between two AY dinucleotides (Fig.  6a), which were 
previously shown to exhibit strong shape preferences. 
Specifically, minor groove narrowing at AY positions 
adjacent to the central spacer was shown to be associated 
with enhanced binding when the nucleotide sequence 
was varied for unmethylated DNA [26, 49]. Therefore, 
we hypothesized that a methylation-induced change in 
DNA shape near the CpG dinucleotide could affect bind-
ing affinity. We used the pentamer-based shape tables 
that form the foundation of DNAshape [33] and methyl-
DNAshape to investigate this effect systematically.

A pentamer window centered at the  A8 position 
includes a CpG dinucleotide at offset 9/10 within its 5 bp 
(NNGAYNNACGNN). However, a CpG step at offsets 
6/7 and 10/11 only includes one bp of the CpG dinucleo-
tide (NNGAYCGAYNNN or NNGAYNNAYCGN) and 
indirectly constrains the nucleotide identity at a sixth 
position after the pentamer window. This distinction 
became important when we predicted MGW. In the case 
of the methylated-DNA table (mPQT), the presence of a 
(methylated) C at position 5 within the pentamer implies 
the presence of a G at the following position in the train-
ing set from which the pentamer tables were derived. 
This prediction is not the case for the unmethylated-
DNA table (PQT). The pentamer tables do not capture a 
weak dependency of shape on the sixth position, which 
confounds our estimate of the methylation effect on 
shape. For this reason, we compiled an additional table 
consisting of unmethylated-DNA shape parameters for 
all hexamers ending with CpG and heptamers with CpG 
flanks (Additional file 1), which we used to estimate the 
effect of methylation on shape. Figure 6d shows that cyto-
sine methylation in a sequence context consistent with 
the presence of a CpG step at offset 6/7 or 10/11 within 
the 12-bp Pbx-Hox binding site results in widening of the 
minor groove (see Additional file 1 for details on statis-
tical tests performed). This observation, combined with 
the known inverse relationship between MGW and bind-
ing affinity for unmethylated DNA, provides a plausible 
explanation for the methylation-induced weakening of 
binding observed at these offsets (Fig.  6b). In contrast, 
no effect of methylation on MGW can be observed for 
the CpG offset 9/10, where direct contacts in the major 
groove already provided a mechanistic explanation [13].

Conclusions
Mechanisms of protein–DNA recognition remain incom-
pletely understood. This lack of knowledge is particularly 
true for the readout of methylated DNA [15], despite its 
important role in gene regulation [22]. DNA sequence 
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Fig. 6 CpG methylation induces a DNA shape change that explains its effect on Pbx‑Hox binding. a Schematic representation of Pbx‑Hox heter‑
odimer bound to DNA (PDB ID 1PUF), and of the effect of CpG methylation on binding. Pbx (green) and Hox (blue) homeodomains bind up‑ and 
downstream of the central spacer region (indicated in red), respectively. CpG methylation at offsets 6/7 and 10/11 reduces binding, whereas 
methylation at offset 9/10 enhances binding. Methyl group readout was previously identified as underlying mechanism for the latter offset [13]. b 
Scatter‑plot representation of relative binding affinities of methylated versus unmethylated sequences for Pbx‑HoxA1 complex. Sequences carrying 
a single methylation event and their corresponding unmethylated part were considered. Green, magenta, and blue points correspond to methyla‑
tion at offsets 6/7, 9/10, and 10/11, respectively. Sequences containing CpG dinucleotides at other offsets (relatively weakly affected by methylation) 
are colored gray. c Alternative representation of the data in b, showing the effect of methylation on binding free energy, denoted as ΔΔΔG/RT. 
Positive (e.g., offsets 6/7 and 10/11) and negative (e.g., offset 9/10) shifts from the dashed line (indicating no methylation effect) reflect reduced and 
enhanced binding (on logarithmic scale) due to methylation. CpG dinucleotides at offsets 6/7 and 10/11 produce the same hexamer context for  A4 
and  A8 (NNAYCG/NGAYCG) and, hence, were assigned a common color, dark‑cyan. d Analysis of the methylation‑induced change in MGW at posi‑
tions  A4 and  A8 within the Pbx‑Hox binding site (NNGAYNNAYNNN), for the different hexameric/pentameric contexts that the Pbx-Hox heterodimer 
may encounter within its binding sequence. Coloring corresponds to that of labels and rectangular patches in c. Statistically significant widening 
of minor groove (first two boxes) plausibly explains the observed reduced binding due to methylation at CpG offsets 6/7 and 10/11. No significant 
change in MGW upon methylation was observed for offset 9/10
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and shape readout are key factors in achieving TF bind-
ing specificity. For base readout, presence of a bulky 
hydrophobic methyl group in the major groove may facil-
itate hydrophobic contacts with protein side chains [17]. 
For shape readout, local structural changes of the double 
helix induced by cytosine methylation may strengthen or 
weaken protein contacts to DNA [25]. Here, we describe 
an approach to probe and comprehend the shape readout 
mechanism of methylated DNA. As a high-throughput 
approach for predicting shape features of methylated 
DNA, our methyl-DNAshape method can be used to 
determine how the intrinsic shape of chemically modi-
fied DNA mediates recognition by TFs. Moreover, this 
method overcomes the limitation of the unavailability of 
experimental structures containing methylated cytosine.

One possible application of our method is to utilize 
high-throughput predictions of DNA shape features in 
quantitative models of protein–DNA binding. We found 
that the predicted change in shape features due to meth-
ylation partially explained the magnitude and context 
dependence of the experimentally measured effect of 
CpG methylation on DNase I cleavage [25]. Moreover, 
we were able to explain previously unexplained effects 
of DNA methylation on the binding specificity of human 
Pbx-Hox complexes. This study, therefore, represents a 
step forward toward a full mechanistic understanding of 
gene expression regulation.
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