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Critical cellular processes, such as gene regulation and signal 
transduction, rely on sequence-specific molecular recogni-
tion to guide constituent proteins to preferentially interact 

with specific nucleic acid or polypeptide ligands. The strength 
and specificity of such ‘sequence recognition’ often spans orders 
of magnitude, and even weak ligands can be functional1–3. Thus, it 
is essential to comprehensively and quantitatively profile sequence 
recognition to decode these molecular networks.

Massively parallel sequencing has substantially increased the 
speed with which sequence recognition can be profiled. In particu-
lar, high-throughput methods that couple sequencing with in vitro 
selection on random ligand pools have emerged as powerful tools 
for the unbiased profiling of molecular interactions. This includes 
SELEX methods for TFs4–14 and RNA-binding proteins15,16 as well 
as protein display methods for proteases17 and T cell receptors18. 
As the randomized ligand pools used in these assays are extremely 
complex (and most sequences are observed rarely, if ever), machine 
learning methods have become essential for synthesizing sequenc-
ing data into ‘recognition models’ that encode how any sequence is 
recognized.

In recent years, several methods—using deep learning19–21, prob-
abilistic mixture models22 or high-dimensional embedding23—have 
been developed to analyze TF:DNA binding data. However, although 
protein interactions are most rigorously quantified in terms of bio-
physical parameters such as dissociation constants (KD), most of 
these methods focus on classifying sequences as bound or free or 
assign non-biophysical binding scores. Although some biophysi-
cal methods have been developed24,25, they are limited to estimating 
relative KD values for TFs and cannot systematically model SELEX 

enrichment over multiple rounds. Furthermore, although new 
assays have been developed to profile in vivo effects beyond direct 
sequence recognition9,12,13,26, no current computational method can 
synthesize such complementary experiments into a unified binding 
model that captures the impact of co-factors and DNA methylation.

In this study, we solve these problems with a flexible machine 
learning framework, called ProBound, which is capable of learn-
ing biophysically interpretable models by synthesizing a wide range 
of sequencing data. Although we set out to analyze multi-round 
SELEX data, we soon realized that ProBound enabled the develop-
ment of sequencing assays that probe previously inaccessible bio-
physical parameters. To illustrate this, we introduce KD-seq (which 
measures absolute KD values using the input, bound and unbound 
SELEX fractions) and Kinase-seq (which profiles kinase substrate 
specificity using a multi-time-point protein display assay). More 
broadly, our results illustrate how classical biochemical assays, 
which often use multiple fractions, time points or concentrations, 
can be upgraded with sequencing and principled machine learning 
to conduct biophysical measurements at unprecedented scale.

ProBound framework
ProBound uses three layers to systematically model multi-library 
sequencing data (Fig. 1 and Methods): a binding layer predicts the 
binding free energy or enzymatic efficiency from sequence using a 
sequence recognition model; an assay layer encodes the selection 
steps that generated the libraries and predicts frequencies of all 
ligands; and a sequencing layer models the stochastic sampling of 
the libraries during sequencing. These layers are combined in a like-
lihood function, which is optimized to infer the recognition model. 
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Although many ligands have noisy counts or are entirely missing 
due to the complexity of randomized libraries, the final recognition 
model is robust because it has to optimally explain the full sequenc-
ing dataset. Each layer is easily extensible; for example, the binding 
layer, which, by default, corresponds to a position-specific affinity 
matrix27, can be extended to include base–base interactions or coop-
erative binding by multiple TFs. Flexibility in the assay layer enables 

the modeling of alternative processes, such as enzymatic modifica-
tion. Finally, multiple assays can be analyzed jointly to profile more 
complex phenomena (for example, methylation sensitivity).

A compendium of accurate TF binding models
Our initial objective was to analyze thousands of published SELEX 
datasets7,8,10,12,13,28–30 and produce high-quality TF binding models 
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molecules coupled with sequencing to characterize sequence-specific molecular interactions. ProBound uses machine learning tailored to model the 
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Fig. 2 | Validation of TF binding model performance. a, Breakdown of the training dataset used to build binding models by originating study and TF 
family (pie charts) and by availability of testing data used to evaluate them (Venn diagram). Representative SELEX (top) and PBM (middle) comparisons 
of observed and model-predicted binding signals used to quantify generalization performance. Each point in the scatterplots corresponds to either 500 
SELEX probes or ten PBM probes; green indicates where the model predicts binding above an estimated baseline (Methods), whereas darker points 
indicate the MAFR of observed binding signal over which, at most, 5% of predicted binding was below the baseline. Representative precision-recall curve 
(bottom) for the ChIP-seq peak classification task used to quantify model performance in terms of AUPRC (1/3 corresponds to a random classifier).  
b, Performance comparison of ProBound models versus popular existing resources. For each ProBound and resource model pair (points), the average score 
was computed for all matching testing datasets. Horizontal bars indicate median performance. Significance was computed using the two-sided Wilcoxon 
signed-rank test (*** indicates P < 10−3).
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that capture low-affinity binding, an important yet difficult-to-detect 
gene regulatory phenomenon1–3,25. This required us to quantify TF 
sequence recognition over a wide affinity range rather than merely 
classify sequences as ‘bound’ or ‘unbound’. We, therefore, assembled 
a training database of published SELEX experiments, which we ana-
lyzed with a uniform computational pipeline, yielding 1,632 bind-
ing models (Fig. 2a, Supplementary Table 1 and Methods). To assess 
the generalization performance of our models, we linked each TF to 
published protein-binding microarray (PBM), chromatin immuno-
precipitation with sequencing (ChIP-seq) and non-training SELEX 
data. We computed three complementary performance metrics: 
meaningful affinity fold range (MAFR), a metric that provides a 
conservative bound on the ability of a model to detect low-affinity 
binding; R2, the fraction of signal variance explained by the model; 
and area under the precision-recall curve (AUPRC), a common 
metric19,20,25,31 for quantifying how well a model classifies genomic 
regions as bound or unbound as determined by ChIP-seq peaks32. 
We used these to benchmark our models to those in major resources 
and surveys, linking all JASPAR33, DeepBind19, HOCOMOCO34, 
Jolma et al.28 and recently published DeepSELEX20 models by TF. 
On average, ProBound outperformed these resources across all 
metrics (Fig. 2b), with the PBM and SELEX metrics displaying the 
largest improvement. Two comparisons—HOCOMOCO ChIP-seq 
AUPRC and DeepBind SELEX R2—showed no significant dif-
ference. The less notable improvement in AUPRC is likely due to 
bias toward high-affinity sequences in ChIP-seq peaks, for which 

accurate low-affinity predictions are less relevant25. Below, we will 
introduce an alternative method for analyzing ChIP-seq data that 
eliminates the need for ChIP-seq peak discovery.

Over the years, several TFs have been assayed many times by 
different research groups and SELEX platforms. We reasoned that 
jointly analyzing such data would produce a ‘consensus’ model 
focused on the true binding signal rather than platform-specific 
biases (Extended Data Fig. 1a). Such consensus models displayed 
significantly improved performance when compared to traditional 
single-experiment models (Extended Data Fig. 1b), indicating that 
multi-experiment analysis can improve binding predictions.

To facilitate adoption by other researchers, we have made a 
curated version of our models, comparative analyses and compu-
tational tools readily available through a comprehensive resource at 
motifcentral.org.

Quantifying TF binding cooperativity
Variables beyond sequence, such as co-factor interactions and DNA 
methylation, substantially influence TF behavior in vivo, and, there-
fore, TF binding models must account for them to improve bind-
ing predictions. We first focused on co-factors, which modulate TF 
binding in a cell-type-specific manner. Despite the growing number 
of SELEX assays characterizing TF complexes7,9,26, it remains a chal-
lenge to quantify sequence recognition in a way that clearly sepa-
rates the contributions from many potential TF complexes and their 
various internal structural configurations—a problem that grows 
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exponentially with the number of factors assayed. In an approach 
that builds upon our multi-experiment framework, we measure 
subunit binding specificity and cooperativity by explicitly modeling 
the allowed complexes in multiple SELEX datasets that probe differ-
ent TF combinations.

We first applied this method on the complex formed by three 
highly conserved Drosophila homeodomain proteins: Homothorax 
(Hth), Extradenticle (Exd) and Ultrabithorax (Ubx). Previous stud-
ies showed that Ubx and Exd form fixed-spacer heterodimers8,25 and 

that Hth uses multiple relative spacings to bind cooperatively with 
similar heterodimers26. To characterize Hth:Exd:Ubx, we first per-
formed SELEX-seq with all three factors and then analyzed these 
data in conjunction with our previous monomer and heterodimer 
data (Fig. 3a and Extended Data Fig. 2a). We modeled the ternary 
complex with two subunits representing Hth and Exd:Ubx; the total 
binding energy was the sum of their independent binding specifici-
ties and of a cooperativity term that depended on their relative posi-
tion and orientation.

The resulting model revealed substantial cooperativity 
(ΔΔGconfig ≈ 2RT) when Hth binds 8–13 base pairs (bp) upstream of 
Exd:Ubx (Fig. 3b), which, along with our monomer and heterodi-
mer models, mirrored previous results25,26. Although a larger spac-
ing is tolerated when Hth is reversed, cooperativity is lost when Hth 
binds far away from the Exd:Ubx half-site, regardless of orientation. 
As expected, selection in the Hth-Exd-Ubx experiment was driven 
by multiple subcomplexes (Extended Data Fig. 2b), underscoring 
the need to simultaneously model all preferences.

To further validate our approach, we reanalyzed published data9 
for the human TF heterodimer MEIS1:DLX3 and found strong 
cooperativity at the exact same configuration (i.e., relative spacing 
and orientation) previously confirmed9 using X-ray crystallography 
(Extended Data Fig. 2c). Subsequent systematic analysis of data for 
all pairwise combinations of the top ten most interacting TFs from 
the same study (Extended Data Fig. 2d) produced binding models 
with significant cooperativity for previously reported9 configura-
tions (Extended Data Fig. 2e; P = 1.5 × 10−30, Mann–Whitney test) 
and provided evidence of cooperativity for many other ones as well 
(Extended Data Fig. 3).

Learning methylation-aware TF binding models
Next, we focused on another variable affecting in vivo binding: DNA 
methylation. Chemical modifications to DNA, such as fully methyl-
ated CpG dinucleotides (meCpG), are common epigenetic marks 
that can alter TF binding and, thus, gene regulation35–38. Unlike 
existing methods that compare methylated and normal SELEX 
libraries to detect TF ‘methylation readout’ at the level of enriched 
subsequences12,14,39, we used ProBound with an extended alphabet 
(Extended Data Fig. 4a and Methods) and our multi-experiment 
framework to learn methylation-aware binding models that resolve 
the position-specific impact of methylation (ΔΔGCpG→meCpG), 
enabling binding predictions for any (un)methylated sequence.

We tested this approach by analyzing the effect of meCpG on the 
ATF4:CEBPγ heterodimer while controlling for the confounding 
influence of the respective homodimers. Using data for all combina-
tions of ATF4/CEBPγ and normal/methylated DNA (Extended Data 
Fig. 4b), we simultaneously learned methylation-aware binding  
models for all three dimers (Fig. 3c and Methods). These predict 
methylation-induced stabilization/destabilization patterns (Fig. 3c 
and Extended Data Fig. 4c) consistent with previous analyses of 
the ATF4 homodimer13 and similar to those of the related CEBPβ 
homodimer13 and ATF4:CEBPβ heterodimer39. Strikingly, ATF4 
overrides CEBPγ to retain its methylation readout at the central 
position of the heterodimer complex. We used ChIP-seq data to 
estimate the impact of these position-specific methylation sensitivi-
ties in vivo and found that methylation significantly affected bind-
ing in the direction predicted by our models (Fig. 3d and Methods).

Other DNA modifications, such as N6-methyladenine (6mA) 
and 5-hydroxymethylcytosine (5hmC), can also be functional40–45. 
To characterize their impact on TF binding, we extended the 
EpiSELEX-seq protocol to assay multiple sub-libraries simultane-
ously: unmethylated, meCpG, 5hmC and 6mA (Fig. 3e and Extended 
Data Fig. 5a). Not only is this simpler than assaying each methyla-
tion mark separately, it also reduces experimental error. Repeating 
the binding assay for CEBPγ and jointly analyzing all four librar-
ies revealed substantial and distinct stabilization/destabilization  
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patterns for both 5hmC and 6mA (Fig. 3e and Extended Data  
Fig. 5b). Notably, the inferred meCpG methylation sensitivity is 
identical to what we found above. These results illustrate both the 
versatility of our approach and the fact that 5hmC and 6mA can 
have a substantial impact on binding.

Measuring absolute binding constants using SeLeX
Although we have focused on quantifying binding specificity in 
terms of relative affinities, knowledge of absolute affinities is neces-
sary for predicting equilibrium occupancy and for comparing dif-
ferent TFs on a common scale. Fundamentally, SELEX assays probe 
relative ligand frequencies and, so far, have only been used to esti-
mate relative affinities. To overcome this limitation, we developed 
an assay called KD-seq. It uses ProBound to jointly analyze the input, 
bound and free probes from a selection round to produce both a 
specificity model and an estimate of the absolute dissociation con-
stant (KD) for a reference sequence. Intuitively, KD-seq uses a sum 
rule that relates the relative ligand frequencies of the three libraries 
to infer absolute binding probabilities, which are then converted to 
KD estimates in a way that corrects for binding saturation (Fig. 4a 
and Methods).

We initially tested KD-seq using the Drosophila homeodo-
main protein Distal-less (Dll) at low DNA and TF concentrations 
(100 nM and 20 nM, respectively) to achieve strong enrichment and 
avoid excessive binding saturation. The resulting model (Fig. 4b)  
accurately predicted enrichment in the bound and free libraries 
over three orders of magnitude in KD (Fig. 4c). For validation, we 
measured the KD values of the optimal model-predicted binding 
site and three suboptimal sequences using standard electromobility 
shift assays and found excellent quantitative agreement (Fig. 4d and 
Extended Data Fig. 6). We then confirmed the robustness of KD-seq 
affinity measurements by repeating the assay at different TF and 
DNA concentrations (Extended Data Fig. 7a). The resulting specific-
ity models were virtually identical (pairwise r2 for ΔΔG ranging from 
0.974 to 0.998), with the fraction of TF and DNA bound changing 
as expected (Extended Data Fig. 7b). Although the KD estimate for 

the highest-affinity sequence was similar across several conditions, it 
shifted when the TF concentration was extremely high compared to 
the KD or when the DNA concentration was much higher than that of 
the TF (Fig. 4e; see ‘Practical guidelines’ in the Methods).

To test the theoretical validity of KD-seq, we used the binding 
model of Fig. 4b as the ‘ground truth’ and simulated data for a range 
of Dll and DNA concentrations. In all cases, ProBound accurately 
recovered the KD model (Extended Data Fig. 8a–e). In simulations 
at various incubation times, ProBound inferred correct KD values at 
times exceeding ~10% of the equilibration time of the slowest probe 
in the library (Extended Data Fig. 8f,g). Taken together, this shows 
that KD-seq is theoretically valid and robust.

ProBound can also learn KD models by jointly analyzing the 
bound and input libraries of multiple SELEX experiments at dif-
ferent TF concentrations. Intuitively, this approach uses satura-
tion effects to determine the absolute affinity scale. For Dll, the KD 
models from the two approaches are very similar (Extended Data  
Fig. 7a,c,d). When applied to multi-concentration RNA Bind-N-seq16 
data for RBFOX2, the resulting KD model correctly captured the 
observed transition from linear to saturated selection in the experi-
ments (Extended Data Fig. 7f). Finally, we note that ProBound can 
estimate relative affinities using only the free and bound libraries, as 
in the Spec-seq46 assay (Extended Data Fig. 7e).

Peak-free motif discovery from ChiP-seq data
Although the preceding analyses have focused on quantifying the 
impact of co-factors and TF concentration on in vitro binding, we 
also wanted to learn their in vivo impact directly from ChIP-seq 
data. Standard motif discovery algorithms aim to discover over-
represented sequences within discrete genomic regions—identified 
by ‘peak callers’—that harbor a statistically significant enrichment 
of ChIP-seq reads. Peak calling is useful for identifying the most 
prominent genomic binding sites, but it ignores information about 
cis-regulatory logic contained within more weakly bound regions. 
We hypothesized that ProBound can extract such logic by directly 
modeling how the input and ChIP libraries relate to each other.
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To test this approach, we used ProBound to discover the factors 
driving the selection in glucocorticoid receptor (GR) ChIP-seq data 
from the IMR90 cell line47 (Methods). It found four binding models: 
one consistent with the GR consensus sequence48,49 and three others 
consistent with known GR co-factors AP-1, FOXA1 and TEAD47,50 
(Fig. 5a). These models were qualitatively consistent with those 
discovered using well-established peak-based methods (Extended 
Data Fig. 9). Inspired by our multi-concentration analysis above, we 
next set out to quantify the impact that the nuclear concentration of 
a TF can have on its binding. We did so by jointly analyzing multiple 
ChIP-seq datasets that probe GR binding in the murine hippocam-
pus after treatment with varying levels of corticosterone (CORT)51, 
an agonist that increases the nuclear concentration of GR (Fig. 5b). 
The resulting model captured sample-specific activity parameters 
reflective of GR nuclear concentration that were proportional to 
CORT concentration (Fig. 5b).

It should be noted that the multi-concentration model was con-
structed on data where each library was intentionally downsampled 
to 105 reads or 0.03 reads per kilobase (kb) of genomic sequence 
on average. Thus, even at extremely low coverage, ChIP-seq data 
clearly contain sufficient information to reliably infer TF binding 

models and quantify biologically meaningful cell state parameters. 
The free-energy parameters of both GR binding models showed 
good agreement with those from a model trained on in vitro data7 
(r2 = 0.97 and r2 = 0.92, respectively; Fig. 5a,b), suggesting that 
in vitro and in vivo observations of binding specificity can, in fact, 
be highly concordant.

Profiling tyrosine kinase kinetics using Kinase-seq
Biological processes that employ sequence-specific protein–pro-
tein interactions are increasingly being studied with display assays 
using diverse DNA-templated protein libraries17,18,52. Although these 
methods are profiling such interactions more comprehensively than 
ever before, interpreting the data remains challenging for many of 
the same reasons as above. Furthermore, current analytical methods 
tend to focus on detecting enriched sequence features rather than 
explicitly estimating binding constants or enzymatic parameters. 
Given the similarities with SELEX assays, we were motivated to use 
ProBound to characterize protein sequence recognition.

As a proof of concept, we focused on a process critical to many 
signal transduction pathways in the cell: the phosphorylation of 
tyrosine residues on proteins. Recently, the substrate sequence  
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preferences of several tyrosine kinases were surveyed with a bac-
terial display library containing thousands of known kinase sub-
strates53. To comprehensively profile the preferences for one of these 
kinases, c-Src, in an unbiased way, we repeated the assay with a new 
library design that randomizes ten amino acid residues around a 
fixed central tyrosine and exposed this library to c-Src for varying 
durations (Fig. 6a and Methods). After sequencing (Extended Data 
Fig. 10), we jointly analyzed all time points to learn a model that 
predicts the sequence-specific catalytic efficiency keff, a simple met-
ric that is often used to compare substrates for the same enzyme. 
Visualizing the inferred efficiency model as a sequence logo  
(Fig. 6b) revealed a position-specific pattern of favorable residues 
consistent with the earlier study53. The model also accurately cap-
tures the observed fraction of phosphorylated peptides over a 
100-fold range in keff for all three time points (Fig. 6c).

To validate the model, we used high-performance liquid chro-
matography (HPLC) to measure the phosphorylation rates for 11 
peptides. As genetic variants can impact phosphorylation rates54, 
we used the PTMVars database55 to find four disease-associated 
single-nucleotide polymorphisms (SNPs) that were predicted by our 
ProBound model to have a large allelic difference. Measurements 
of their normalized initial phosphorylation rate differed signifi-
cantly in the direction predicted by the model (Fig. 6d). In addi-
tion, there was no measurable difference for a SNP predicted 
to cause only a small allelic difference for the F8 protein, and a 
model-defined high-efficiency peptide (Src-high) was indeed the 
highest. Predictions tracked HPLC measurements over three orders 
of magnitude in keff.

Discussion
A major goal of this study was to rigorously estimate biophysical 
parameters from massively parallel sequencing data using machine 
learning. Although biochemists have measured such parameters for 
decades, these measurements are generally low-throughput. By con-
trast, high-throughput sequencing-based analysis tends to focus on 
the detection of enrichment patterns that only indirectly reflect these 
quantities. Moreover, modern machine learning methods, such as 
deep neural networks, tend to yield highly overparametrized black 
box models whose parameters have no direct biophysical mean-
ing. Here, we showed that, by explicitly modeling the assay process, 
we can use machine learning to turn DNA sequencers into virtual 
measurement devices that accurately quantify biophysical param-
eters. Molecular biologists and computer scientists often address the 
same question using very different language; for instance, classifier 
performance and binding free energies are both used to quantify 
sequence recognition. We hope that approaches such as ours help 
keep the literature more coherent and inspire direct experimental 
validation of algorithm performance.

Central to our approach is the observation that some quanti-
ties cannot be estimated through pairwise enrichment analysis 
but only through more structured integration of complementary 
data. One example is our combinatorial approach to the sepa-
ration of different TF complexes, which we also extended to 
methylation-aware binding models. Another is how analyzing 
the bound, free and input fractions jointly—not pairwise—allows 
absolute affinities to be measured. Our approach is reminiscent 
of more traditional biochemical assays, which collect data across 
different time points, concentrations or fractions and use curve 
fitting to estimate constants. As we study increasingly complex 
aspects of sequence recognition—such as the combined impact of 
sequence, co-factors, DNA methylation and TF concentrations or 
the integration of in vitro and in vivo perspectives—we foresee that 
rigorous integration of complementary data along the lines that 
we have sketched here will become increasingly important. More 
generally, we anticipate that the accurate and unbiased profiling 
of sequence recognition that ProBound enables will have many  

applications in areas of biotechnology where the rational engineer-
ing of ligands or substrates is critical.
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Methods
Overview of the algorithm. For each experiment, the data consist of a count 
table enumerating the probes in each SELEX round. The core of the algorithm is 
a statistical model of the experiment that defines the likelihood of a set of model 
parameters given the count table. On a high level, this likelihood is computed by 
first defining the probability that each probe is bound in terms of its sequence, 
then predicting the probe frequencies in each library using a cumulative selection 
function and, finally, modeling the stochastic sampling of sequencing. The model 
parameters are estimated from the data through numerical maximization of the 
likelihood.

Probabilistic motivation of the binding model. The binding model defines the 
probability that a probe is bound:

Pbound =
Zbound

1 + Zbound
. (1)

Here, Zbound is the partition function, which can be thought of as a weighted sum 
over microscopic states. Assuming that, at most, two protein molecules are bound 
to the probe, the partition function is given by

Zbound =
∑

a

∑

x

[Pa]

KD,a(Sx)
+

∑

a,b

∑

x1 ,x2

[Pa][Pb]

KD,a(Sx1 )KD,b(Sx2 )
ωa:b(x1, x2), (2)

where a is a “binding mode” index that denotes protein type; [Pa] is the 
concentration of protein a; Sx is a probe subsequence of length La starting at an 
offset and strand denoted by x; KD,a(Sx) is the dissociation constant for protein a 
binding Sx; and ωa:b(x1, x2) quantifies the cooperativity between factors a and b 
binding at positions x1 and x2, respectively. Note that ωa:b(x1, x2) equals 1 if a and b 
bind independently from each other, equals 0 for prohibited conformations and is 
greater than 1 if the factors bind cooperatively.

It is convenient to express KD in terms of its value for a references sequence S0 
and a modifying factor quantifying the relative binding strength27:

Krel
D,a(Sx) =

KD,a(Sx)
KD,a(S0)

= exp
(

ΔΔGa(Sx)
RT

)

. (3)

Here, ΔΔGa(S) ≡ ΔG(S) − ΔG(S0) is the difference in free-energy penalty ΔG of 
binding between S and S0; R denotes the ideal gas constant; and T is the absolute 
temperature.

A central goal of our algorithm is to learn how ΔΔGa(S) depends on the 
sequence. ProBound models this as a sum of additive contributions associated with 
sequence features ϕ:

−

ΔΔGa(Sx)
RT

=
∑

ϕ∈Φ

βa,ϕXϕ(Sx) ≡

−→β a ·
−→X (Sx) (4)

Here, Φ is the set of sequence features; βϕ is the energetic impact of ϕ; and Xϕ(Sx) 
is a binary indicator of whether sequence Sx contains ϕ. By default, Φ is simply the 
letter sequence along Sx. In this case 

−→β  encodes a position-specific affinity matrix 
(PSAM)24,27,56 with size matching the length of Sx. ProBound can also include letter 
pairs as features, both adjacent (giving dinucleotide interactions for DNA as in, for 
example, NRLB25) and non-adjacent.

Finally, although ProBound is similar to MODER22 in that both methods 
model monomeric and dimeric binding, these methods have several differences: 
(1) ProBound predicts the quantitative equilibrium binding probability in terms 
of the biophysically interpretable partition function Zbound, whereas MODER uses 
a mixture model and the expectation–maximization algorithm to perform motif 
discovery; (2) ProBound jontly analyzes all available SELEX rounds, whereas 
MODER analyzes a single set of bound sequences; (3) MODER allows dimeric 
interactions to modify the combined position weight matrix for two closely spaced 
or clashing motifs; and (4) ProBound has broad applicability beyond discovery of 
dimeric motifs.

Implementation of binding layer. Although the above derivation provides a 
motivation for the binding model, it has to be adapted for SELEX experiments. 
First, it is clear from Eq. (2) that the protein concentration [Pa] and binding 
constant KD,a(S0) for a given factor a cannot be separately estimated from the data, 
but only the ratio αa = [Pa] / KD,a(S0) can, a quantity that we call the binding mode 
activity. We similarly define the binding mode interaction activities as αa:b = [Pa]
[Pb] / KD,a(S0)KD,b(S0). Second, because the free protein concentration can vary 
between SELEX rounds r, the activities can take independent values in each round. 
Third, most experiments are performed in a low-protein-concentration regime 
where Zbound ≪ 1 and Pbound ∝ Zbound. Because the data only provide information 
about the relative rate at which probes are selected, only the relative values of 
αa and αa:b are meaningful in this limit. Fourth, although PSAM models can be 
accurate for close-to-consensus sequences, they severely underestimate the affinity 
of far-from-consensus sequences, for which non-specific binding is dominant57. 
This can be addressed by including a non-specific binding term αN.S. in Zbound. 

Finally, it is sometimes important to include a factor ωa(x) that models biases 
in binding along the probe. Putting all of this together gives that the partition 
function in selection round r is given by:

Zbound,r = αN.S.,r +
∑

a
αa,r

∑

x
ωa(x)e

−→β a·
−→X (Sx)

+
∑

a,b
αa:b,r

∑

x1 ,x2
e
−→β a·

−→X (Sx1 )+
−→β b·

−→X (Sx2 )ωa:b(x1, x2)
(5)

The binding probes typically feature a variable region flanked by constant 
sequences. The sliding window sum over subsequences Sa can be configured to 
include fa letters from the flanking sequences. By default, the sum runs over both 
strands, but it can be restricted to only one strand (which is useful for modeling 
RNA and peptides).

Assay layer. The selection model predicts the relative concentrations fi,r of each 
binding probe i in each selection round r. By default, the concentrations in two 
subsequent rounds are related through an enrichment factor proportional to the 
binding. It is convenient to express this as

fi,r = fi,r−1(Zbound,i,r)
ρ
(1 + Zbound,i,r)

γ (6)

where Zbound,i,r is the partition function evaluated for probe i in round r. 
Experiments conducted in the low-protein-concentration limit are modeled 
by setting (ρ, γ) = (1, 0). Binding saturation can be accounted for by setting 
(ρ, γ) = (1, −1). Although previous methods have modeled enrichment between 
a pair of SELEX libraries (such as the linear selection model used by NRLB25 and 
the saturated binding model used by BEESEM to optimally explain the k-mer 
enrichment in HT-SELEX data24), and although the recent DeepSELEX method 
analyzes multiple SELEX rounds using a multi-layer neural network (although in a 
way that neither models the thermodynamics of binding nor the cumulative effect 
of repeated enrichment)20, no other method rigorously models how a full SELEX 
library evolves across multiple selection rounds.

Some experiments (such as KD-seq; see below) do not use repeated binding 
enrichment but, rather, derive multiple libraries directly from the input. Such 
experiments are better modeled using

fi,r = fi,0(Zbound,i,r)
ρr (1 + Zbound,i,r)

γr (7)

Finally, kinetic experiments that enrich and sequence modified or unmodified 
probes can be modeled using the constant-rate-enrichment model:

fi,r = fi,r−1

( 1
1 + e−δ e

−Zbound,i,r +
1

1 + eδ

(

1 − e−Zbound,i,r
)

)

(8)

Here, δ→∞ and δ→−∞ correspond to the unmodified and modified fractions, 
respectively.

Sequencing layer. The sequencing model computes the likelihood of the observed 
count tables ki,r given the relative concentrations fi,r predicted by the selection 
model. The counts are assumed to follow a Poisson distribution with expectation 
value

E[ki,r] = ηrfi,r (9)

Here, the parameter ηr normalizes the relative probe concentration and adjusts to 
the correct sequencing depth. The (rescaled) likelihood is then

logL =
∑

r,i

[

ki,r log(ηrfi,r) − ηr,ifi,r
]

/ktotal + const. (10)

where ktotal is the total number of reads and where the last term is independent of 
model parameters and can be ignored for the purpose of optimization. Because 
fi,r is proportional to fi,0, the latter parameter can be optimized analytically and 
substituted back into Eq. (10), giving

logL =
∑

r,i
(ki,r log pr;i) /ktotal + const. (11)

where pr;i = ηrfi,r/
∑

r′ ηr′ fi,r′. Note that Eq. (11) also can be derived by assuming 
that the counts for each probe follow the multinomial distribution across columns 
with probability pr;i. Also note that, because all unobserved probes have ki,r = 0 and 
do not contribute to the likelihood, the sum over i only runs over the observed 
probes. This is a major advantage compared to NRLB25, where the sum is over all 4L 
probes, with L as the number of variable positions. This sum can only be evaluated 
using dynamic programming, and this restricts NRLB to data from only a single 
round of affinity-based enrichment in the absence of saturation.

A second advantage of this approach is that it seeks to predict the quantitative 
count of all observed sequences and give the appropriate weight to both (the 
relatively rare) high-count sequences and (the much more numerous) low-count 
sequences. This differs substantially from DeepSELEX20 (which builds a 
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multi-library sequence classifier using the top 15,000 sequences and then 
disregards the sequencing count), DeepBind19 (which truncates the sequencing 
counts of a selected SELEX library into present or absent, generates a synthetic 
input library and then builds a binary classifier of selected versus input), MODER22 
(which performs motif discovery within one set of sequences without counts) 
and BEESEM24 (which minimizes the error in the predicted library-wide k-mer 
frequencies).

Finally, note that Eq. (11) is independent of the initial probe frequencies fi,0, 
meaning that the initial library need not be random but can consist of genomic 
DNA fragment or custom-designed sequences.

Multi-experiment learning. ProBound simultaneously models multiple 
experiments by computing the likelihood Le of each experiment e and then 
optimizing the combined likelihood

logL =
∑

e logLe (12)

The precise way in which the likelihood Le is evaluated can be tailored to the 
details of each experimental design:

 1. A different configuration of binding modes and their interactions can be 
chosen for each experiment when computing Zbound when desired.

 2. The binding mode (and interaction) activities can either take independent 
values αa,e in each experiment or be constrained to αa,e = [Pa]eαa, where αa is 
the global activity of binding mode a and [Pa] is a set parameter. The latter is 
useful when integrating experiments conducted at different protein concen-
trations or in kinetic assays where [Pa] is set to the treatment time.

 3. Chemical modifications are encoded by expanding the alphabet and translit-
erating letters to appropriate experiments. For example, meCpG modifica-
tions can be encoded using the alphabet ACcGgT and the complementarity 
rules A ↔ T, C ↔ G and c ↔ g, expanding the feature set Φ of the binding 
model to include the additional letters and performing the transliteration 
CG → cg for methylated probes.

To our knowledge, no other methods have similar functionality for jointly analyz-
ing multiple complementary SELEX datasets.

Regularization. Three regularization terms were included to avoid overfitting 
and to improve the stability of the numerical optimization. The first was a L2 
regularization term for the parameter vector

−→θ = {βϕ, log αa, log αa:b, log ωa(x), log ωa:b(x1, x2), log ηr} (13)

with weight λ. The second term was inspired by the Dirichlet distribution, which 
commonly is used as a prior for probability parameters. Thus, for each feature ϕ, 
we identified all features Φc(ϕ) that are of the same class c (monomer, or dimer with 
the same spacing) and located at the same position within the binding site, and 
then we defined a feature probability

p(ϕ) = eβϕ

(

∑

ϕ′∈Φc(ϕ)
eβϕ′

)

−1

(14)

The regularization term is then computed as the rescaled log-PDF of p(ϕ) in the 
Dirichlet distribution

kDirichlet
ktotal

∑

ϕ

log p(ϕ) (15)

where kDirichlet is analogous to a pseudocount. The final regularization term in the 
likelihood is defined as

∑

i

(

eθi−θmax + e−θi−θmax
)

(16)

and introduces an exponential barrier (by default θmax = 40) that prevents the 
optimizer from failing or getting trapped in regions with large numerical errors.

Procedure for setting kDirichlet. The importance of the Dirichlet regularizer in Eq. 
(15) is set by kDirichlet. For fits with all-by-all interactions, the inferred coefficients 
tended to be unstable for small values of kDirichlet. Although increasing kDirichlet 
stabilizes the coefficients, they shrink toward 0 when kDirichlet is excessively large. 
We, thus, developed a procedure for setting kDirichlet and applied it uniformly in all 
analyses that included dinucleotide or all-by-all interactions. In this procedure, 
we ran ProBound using a wide range of Dirichlet weights (kDirichlet ∈ {0, 10, 20, 50, 
100, 200, 500, 1,000, 2,000}), fixed the monomer coefficients 

−→β mono and dimer 
coefficients 

−→β di in each resulting model using the mismatch gauge (see below) 
and computed the pairwise Pearson correlation r2 between the inferred 

−→β di 
for different values of kDirichlet. The resulting matrix r2(k1, k2), where k1 and k2 are 
values of kDirichlet, had a block-like structure where 

−→β di was highly correlated for 
large values of k1 and k2 but only weakly correlated when k1 or k2 was small. We 

considered the coefficients to have stabilized when r2 > 0.8 between a model and 
the model with the next-smaller value of kDirichlet. Using this procedure, we fixed 
kDirichlet to be 0 for the Hth-Exd-Ubx analysis (Fig. 3b), 0 for the ATF4/CEBPγ 
EpiSELEX-seq analysis (Fig. 3c), 0 for the CEBPγ:CEBPγ multi-EpiSELEX-seq 
analysis (Fig. 3e), 200 for the RBFOX2 analysis (Extended Data Fig. 7f), 200 for 
the single-experiment Dll analyses (Fig. 4b), 1,000 for the multi-experiment Dll 
analyses (Extended Data Fig. 7c–e) and 50 for the Src analysis (Fig. 6b). kDirichlet was 
set to 20 in all analyses that lacked interactions—namely, the SELEX benchmarking 
(Fig. 2), the CAP-SELEX analyses (Extended Data Figs. 2c and 3) and the ChIP-seq 
analysis (Fig. 5).

Model optimization scheme. To estimate the model parameters, ProBound uses 
the quasi-Newton optimization method L-BFGS to minimize the loss function. As 
gradient-based methods cannot guarantee convergence to the global minimum, 
we developed a heuristic method that escapes common local minima. Specifically, 
given an optimal binding model, closely related but suboptimal models can be 
generated by (1) shifting the motif to the left or right, (2) extending or shrinking 
the motif to the left or right and (3) increasing or deceasing the flank length25. 
Thus, given that L-BFGS converges at a minimum, our method explores the above 
transformations to find the model with the optimal footprint.

More precisely, ProBound optimizes the loss function by first restricting it to 
include only the first binding mode (and non-specific binding) and optimizing 
this model and then sequentially including and optimizing additional binding 
modes (and interactions as they become possible). As each new binding mode a 
(or interaction a:b) is included and optimized, the algorithm takes seven substeps: 
(1) heuristic adjustment of αa (or αa:b) so that it is expected to contribute to 5% 
to Zbound; (2) freezing the values of all model parameters; (3) unfreezing and 
optimizing η to avoid shocks from incorrectly predicted sequencing depth; (4) 
unfreezing and optimizing the monomer features in 

−→β a mode to give an initial 
binding model (ωa:b (x1,x2) is unfrozen and optimized for interactions); (5) greedy 
exploration of alternative binding models with different frame shift (shifting the 
recognized sequence features to left or right), footprint (expanding the region of 
feature recognition to the left and/or right) or flank length (including subsequences 
located further into the fixed flanking regions when computing Zbound); (6) 
sequential unfreezing and optimization of dimer features and ωa(x) if applicable; 
and (7) unfreezing of all model parameters. At each substep, L-BFGS is used to 
optimize the unfrozen parameters. By default, the parameters are seeded with 
small random numbers, but the binding modes can also optionally be seeded using 
International Union of Pure and Applied Chemistry (IUPAC) codes. Additional 
constraints can be imposed on the parameters to implement reverse-complement 
symmetric binding modes or translationally symmetric interactions.

Gauge fixing. Models with pairwise letter interactions are over-parametrized, 
meaning that an infinite set of parameter values 

−→β  encode the same sequence 
specificity. Specifically, for any binding site sequence S, 

−→β ·

−→X (S) is invariant 
under transformations of the form

βϕ → βϕ + A ∀ϕ ∈ Φmono(x1) (17)

βϕ → βϕ − A ∀ϕ ∈ Φdi(x1, x2, n) (18)

where Φmono(x1) is the set of monomer features at position x1; Φdi(x1, x2, n) is the 
set of dimer features connecting positions x1 and x2 and with n at x2; and A is the 
transformation coordinate. For visualization and model comparison purposes, 
it is convenient to select one representative model for each sequence specificity 
(analogous to gauge fixing in physics). Here, we use a convention that we call 
the ‘mismatch gauge’. In this convention, the coefficients are such that, first, 
only one monomer coefficient contributes for single-edit variations of reference 
sequence S0, and, second, at most one of the dimer coefficients contributes for each 
double-edit variation of S0. After imposing mutation gauge, the resulting PSAMs 
were visualized using standard energy logos27, and the interaction coefficients were 
displayed using heat maps.

Benchmarking ProBound. Model training. To benchmark ProBound, we first 
curated a training database of published TF SELEX datasets7,8,10,12,13,28–30. Although 
this database contained 2,272 datasets, Yang et al.30 contained re-sequenced 
libraries from Jolma et al.28, and, thus, the database contained 1,767 unique 
experiments. Datasets with low sequencing depth or low enrichment were filtered 
out as described below, giving 2,116 datasets (1,632 experiments).

We next developed a uniform computational pipeline to analyze each dataset. 
This was complicated by experimental differences between the SELEX platforms, 
including the number of selection rounds, selection strength and sequencing 
depth. Furthermore, several artifacts are known to impact HT-SELEX datasets, 
including contamination between wells, inconsistent selection between rounds 
and sequence biases6,19,23,25,28. Although such challenges can be overcome using 
manual inspection19,28, we instead chose to develop a fully automated system. This 
system first uses ProBound to analyze each dataset (subsampled to 100,000 reads 
per sequencing library) using three different settings (that differ in the number of 
binding modes and in how non-specific binding is modeled; see Extended Data 
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Methods) and then prunes each fit to retain only the most relevant binding mode 
and, finally, selects the setting that produced the best-performing binding model 
(based only on the training data).

Model pruning. For each fit generated by ProBound, one binding mode typically 
captured the TF sequence specificity, and the other typically had small values 
or encoded platform-specific artifacts, such as sequence bias or contamination. 
Although identifying the biophysically relevant binding mode manually is 
straightforward in most cases, we wanted to automate this process and, therefore, 
developed a quality score that ranks and selects the most relevant binding mode:

r2mode + log Imono (19)

Here, r2mode is the the Pearson correlation (across the SELEX probes in the training 
dataset) of the log-transformed binding affinity predicted by the mode (plus an 
optimized non-specific term) and the log-transformed binding predicted by the 
full fit, and Imono is the information content of the mononucleotide coefficients  
after imposing the mismatch gauge. This score favors the binding mode that 
contributes the most to the final prediction and has the highest specificity. 
Conversely, it disfavors binding modes corresponding to sequence bias (which can 
affect many probes but typically have low information content) and contamination 
(which typically impacts few probes but can give rise to highly specific binding 
modes). We, thus, selected the binding mode with the highest quality score for 
downstream analysis.

Model selection. We next compared the binding models learned using the three 
settings. Although very similar in most cases, poor models were occasionally 
observed having suboptimal motif shifts or encoding the aforementioned artifacts. 
To automatically select the best model, we developed the quality score Straining, 
which measures model performance in predicting the training data. As the 
heterogeneity of the training data made it difficult to quantify this performance 
using a single measure, Straining was defined to be the average of six sub-scores that 
quantify different aspects of model performance:

Straining = mean
({

Flogit(r2fit,8mer;0.5), Flogit(R2
fit,affinity, 0.95), Flog(ffit,affinity;5.0),

Flogit(R2
scoring,training;0.95), Flog(MAFRscoring,training;5.0),

Flog(Iscoring,mono;3.0)
})

(20)

where the functions Flogit(x;x0) = expit (logit(x) − logit(x0)) and 
Flog(x;x0) = expit (log(x) − log(x0)) map the metric x to the unit interval such 
that the threshold x0 maps to 0.5. Here,
•	 r2fit,8Mer was computed by first using the full ProBound model to predict the 

training count table, then counting the number of occurrences nobs/pred8mer (k, r) of 
each 8mer k in each round r of the of the observed and predicted count tables 
and then computing the observed and predicted 8mer enrichment between 
the first and last round using

f obs/pred8mer (k) =
1

rlast − rfirst
log

(

1 + nobs/pred8mer (k, rlast)
1 + nobs/pred8mer (k, rfirst)

)

(21)

and, finally, computing the Pearson correlation between f obs8mer and f pred8mer.
•	 R2

fit,affinity and ffit,affinity were computed by first using the full ProBound model 
to predict the training count table. Then, for each pair of subsequent rounds 
r and next(r) (ignoring rounds with fewer than 10,000 reads), the probes 
were sorted (conjointly in the observed and predicted tables) by the predicted 
enrichment between the rounds. The probes were then divided into bins 
i associated with the observed and predicted probe counts nobs/predbin (i, r) 
such that nobsbin(r) + nobsbin(next(r)) = 1000 in each bin. After computing the 
observed and predicted enrichment using

f obs/predbin (i;r) =
1

next(r) − r
log

(

1 + nobs/predbin (i, next(r))
1 + nobs/predbin (i, r)

)

(22)

we finally computed the metrics

R2
fit,affinity = R2

k maxr
(

f obsbin (i;r), f
pred
bin (i;r)

)

(23)

ffit,affinity = maxr

(

maxif obsbin (i;r)
minif obsbin (i;r)

)

(24)

where R2
i  denotes the coefficient of variation evaluated across bins i.

•	 R2
scoring,training and MAFRscoring,training were computed using the same method that 

was used to quantify generalization performance in predicting testing SELEX 
data (see below) but, instead, predicting the training data.

•	 Iscoring,mono is the information content of the scoring model, computed using the 
monomer coefficients after imposing the mismatch gauge.

Finally, as each of the re-sequenced experiments had two associated fits (based 
on data from Jolma et al.28 and Yang et al.30, respectively), we selected the fit with 
the best training performance Straining for benchmarking purposes.

Evaluation of model performance. To benchmark the resulting binding models, 
we curated a testing database of published SELEX (same as training database), 
PBM58–60 and ENCODE ChIP-seq32 datasets. We then quantified the ability of the 
above binding models to predict the testing data. Binding models and testing data 
were matched by TF and species; if no match was found, the matching criteria were 
expanded to consider orthologous human and mouse TFs. For comparison, we 
also downloaded binding models from the JASPAR, DeepBind and HOCOMOCO 
databases, the original HT-SELEX TF binding survey and from the recently 
published DeepSELEX method19,20,28,33,34, and we repeated all analysis using these 
models. For the SELEX dataset predictions, comparisons were skipped if either 
the ProBound model or the downloaded model were known to be trained on the 
testing dataset in question (or other datasets from the same laboratory).

For the SELEX and PBM experiments, we used the binding models to predict 
the total affinity (denoted xi) for each probe i and quantified how well these 
predictions agree with the measured binding yi. For the SELEX experiments, the 
signal consisted of the probe count enrichment ki,r+1 / ki,r between subsequent 
SELEX rounds (with maximum normalized to 1). For the PBM experiments, the 
background-subtracted and minimum–maximum normalized binding signal was 
used. For both platforms, we encountered two challenges. First, the measurements 
for individual probes were too noisy to quantify model performance accuracy (for 
SELEX, typical sequences were observed just once; for PBM, the signal depends 
strongly on the position of the binding site in the probe, which varies). Inspired by 
earlier PBM analyses that removed position bias by considering the 8mer-binned 
median signal31,56, we sorted and binned the probes using xi (with bin size 500 
for SELEX and 10 for PBM) and then computed the binned signal yi (using the 
bin-averaged enrichment, with pseudocount 1, for SELEX, and the median signal 
for PBM). Second, binding signals can be distorted by experimental artifacts, 
such as binding saturation, background and non-specific binding not modeled by 
the model. To correct for such distortions, xi was transformed using the binding 
saturation function:

ŷi =
β0

1 + (βC(xi + βNSB))
−1 (25)

Here, β0 sets the scale, βC > 0 sets the concentration and βNSB sets the non-specific 
binding. These parameters were estimated by minimizing 

∑

i[log(yi/ŷi)]
2 for 

SELEX (with β0 > 0 and βNSB > 0) and 
∑

i(yi − ŷi)
2 for PBM (for which yi can be 

negative). Model quality was then quantified using the coefficient of determination 
R2 of yi and ŷi (on a logarithmic scale for SELEX) and the MAFR, which is 
defined as (max

i
yi)/ybg where ybg is the weakest signal detected by the model. 

To estimate ybg, we first defined a set of (binned) probes predicted to be bound 
as ŷi > 1.25Q1(ŷ) (where Q1 is the first quartile) and then defined ybg to be the 
smallest value of yi identifying the bound set at 5% false discovery rate (FDR). For 
multi-round SELEX experiments, R2 and the effective range were computed for all 
rounds, and the largest values were recorded.

For the ChIP-seq experiments, we quantified model performance using the 
AUPRC in classifying binding peak versus background sequences. To get the peak 
sequences, we downloaded narrowPeak files from the ENCODE portal (see 
below) and extracted the genome sequence from the 500 peaks with the strongest 
enrichment. To generate the background set, we shifted the peak interval one peak 
length to the left and right and extracted the genome sequences.

Filtering of SELEX training datasets. We first curated a database of published 
SELEX experiments and downloaded the associated raw sequencing data7,8,10,12,13,28–

30. Methylated SELEX experiments were not considered. For each experiment, 
we downsampled the sequencing libraries to contain, at most, 100,000 reads and 
tabulated the probe counts in each SELEX round. We then filtered out low-quality 
experiments using three criteria. First, low-coverage experiments were removed 
by requiring at least two rounds to have at least 10,000 reads. Second, experiments 
were discarded if no sequencing library before round three had 10,000 or more 
reads. Third, experiments with low enrichment were discarded. The enrichment 
was quantified by first tabulating the frequencies p(k, r) (using pseudocount 5) of 
all 5mers k in each SELEX round r and then, for each pair of rounds ri and rj with 
10,000 or more reads, computing the rescaled Kullback–Leibler (KL) divergence

DKL(r2, r1) = 1
r2−r1

∑

k
p(k, r2) log2

p(k,r2)
p(k,r1) (26)

Only experiments with rescaled KL divergence exceeding 0.01 for at least one 
combination of rounds were retained.

Scoring of binding probes. In quantifying generalization performance, 
we predicted the occupancy of DNA sequences using both the ProBound 
binding models and previously published models. For DeepBind, we 
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exponentiated the scores returned from the deepbind scoring tool, which 
is proportional to binding affinity. For JASPAR and original HT-SELEX TF 
survey, the binding models were position–frequency matrices (containing 
counts). These were first converted to position probability matrices (PPMs, 
using a pseudocount of 1), which were then used to compute the binding 
probability at each offset in the sequence. The occupancy was then defined 
to be the sum of the binding probabilities. For HOCOMOCO, the binding 
models were PPMs, and the occupancies were computed as described 
above. For DeepSELEX, which outputs the difficult-to-interpret quantity 
A = max(−→p (R4)) + max(−→p (R3)) − max(−→p (R0)) ∈ [−1, 2] (where −→p (Rk) is a 
vector containing the predicted probability for SELEX round k along the  
scored sequence), the values were transformed using the linear map (A + 1) /  
3 to occupy [0, 1].

ENCODE ChIP-seq datasets. ENCODE datasets were downloaded in December 
2018 using this query string.

Binding by multi-protein complexes. ProBound analysis. ProBound was 
configured to jointly analyze SELEX experiments performed with different 
combinations of TFs, as described in the Extended Data Methods. In the case of 
Hth-Exd-Ubx, we analyzed published SELEX-seq data for Exd-Ubx, Hth, Exd 
and Ubx. In addition, we performed a SELEX-seq assay for Hth-Exd-Ubx (see 
below). CAP-SELEX data for human TF pairs were analyzed jointly with matched 
single-TF HT-SELEX data as described in the Extended Data Methods and 
Supplementary Table 3.

Experimental protocol. The Hth-Exd-Ubx SELEX experiment was carried out 
following previously published methods8,61. In brief, after expressing and purifying 
the wild-type homeodomain proteins, a final concentration of 50 nM was 
assembled, incubated with excess DNA (10–20 fold) for 30 minutes and loaded 
onto an EMSA gel. A DNA library with 30 randomized bases was used. The 
TF-bound fraction was isolated from the gel and amplified and either subjected 
to another round of enrichment or prepared for sequencing. Three rounds of 
enrichment were performed. After each selection round, the DNA was extracted 
from the gel and amplified by using Ilumina’s small RNA primer sets. Sequencing 
barcodes were added in a five-cycle PCR step, and the final library was gel-purified 
using a native TBE gel before sequencing. Libraries were sequenced at the New 
York Genome Center using separate lanes on an Illumina HiSeq 2000 sequencing 
machine.

Effect of DNA methylation. ProBound analysis. ProBound learns 
methylation-aware binding models by jointly analyzing normal and methylated 
SELEX libraries after encoding the methylation state of each base pair using an 
extended alphabet (Extended Data Fig. 4a and configuration in Extended Data 
Methods). Encoding methylation status in this manner allows us to infer the 
position-specific free-energy impact of such chemical modifications. For the 
ATF4/CEBPγ homodimers and heterodimers, we jointly analyzed two published 
EpiSELEX-seq experiments for ATF4 and CEBPγ and a new EpiSELEX-seq 
experiment that included both ATF4 and CEBPγ. We also generated EpiSELEX-seq 
data for CEBPγ in combination with the chemical modifications meCpG, 5hmC 
and 6mA.

Experimental protocol. ATF4 protein purification and EpiSELEX-seq experiments 
were performed as described previously13. Purified CEBPγ protein was kindly 
donated by the Lomvardas laboratory at the Zuckerman Institute at Columbia 
University. To generate randomized 5hmC or 6mA libraries, single-stranded oligos 
with a 16-bp randomized region were ordered from TriLink Biotechnologies, 
substituting (1) deoxycytidine triphosphate (dCTP) with deoxy-(5hm)-cytidine 
triphosphate (d5hmCTP) or (2) deoxyadenosine triphosphate (dATP) with 
deoxy-(6m)-adenosine triphosphate (d6ATP) during the synthesis step. For 
double-stranding, a standard mix of deoxy-nucleotides was used, resulting in 
hemi-modified libraries. meCpG libraries were generated by enzymatic treatment 
with M.SssI (NEB) as described previously13. The library sequences consisted of left 
and right constant adapters (GGTAGTGGAGG- and -CCAGGGAGGTGGAGTAGG, 
respectively) flanking a library specific barcode and a 16-bp randomized sequence:
•	 no modification: -TGGG-CCTGG-N16-
•	 meCpG: -GCAC-CCTGG-N16-
•	 5hmC-Library: -CAGT-CCTGG-N16- (5hmC instead of C in 16N)
•	 6mA-Library: -AGTG-CCTGG-N16- (6mA instead of A in 16N)

GLM analysis of ATF4 and CEBPγ ChIP data. To estimate the effect of DNA 
methylation on in vivo AFT4 and CEBPγ binding, we first scanned the genome 
for close-to-consensus motif matches i with CG at positions predicted by the 
model to have strong methylation readout: TGACGTCA and TGACGTCG for 
ATF4:AFT4; TTGCGCAA for CEBPγ:CEBPγ; and TTGCGTCA and TTGCATCG 
for CEBPγ:ATF4. We next downloaded aligned ATF4 and CEBPγ ChIP-seq 
reads and matched input from ENCODE (ENCFF872NFM, ENCFF801LQC and 
ENCFF713PVH), extended the alignments to 125 bp and computed the genome 
coverages (kATF4,i, kCEBPγ,i, kInput,i) at each motif match. The DNase-seq coverage 

(kDNase,i, ENCFF971AHO) and bisulfite sequencing methylation status (fmeCpG,i, 
ENCSR765JPC, binarized using 20% and 80% thresholds and keeping matches 
with at least ten reads) were also recorded. We finally modeled the ATF4 and 
CEBPγ ChIP-seq coverage at the relevant motif matches (excluding CEBPγ:CEBPγ 
matches for ATF4 and ATF4:ATF4 matches for CEBPγ) using two separate 
binomial generalized linear models:

kChIP,i ∼ Binomial
(

kChIP,i + kInput,i ,
eηi

1 + eηi

)

(27)

ηi = β0,a + kDNase,i βDNase + fmeCpG,i βmeCpG,a (28)

In this model, β0,a encodes the relative affinity of motif a; βDNase encodes the impact 
of DNA accessibility; and βmeCpG encodes the impact of DNA methylation for motif 
a and is the sought-after variable. The significance of the methylation readout was 
assessed using an F-test (Supplementary Table 4). For TGACGTCG, we assumed 
that the methylation readout of the two CGs contribute independently and that the 
readout of the central CG can be estimated using the sequence TGACGTCA.

Inferring absolute KDs. The KD-seq assay incubates a TF (or other protein) with 
a library of DNA probes (or RNA or peptide probes), separates the bound and 
free probes and sequences the input (I), bound (B) and free (F) fractions. In 
equilibrium, the probability that probe i is bound or free is given by

p(B|i) =
[DNAi]B
[DNAi]I

=
[P]F

[P]F+KDi

p(F|i) =
[DNAi]F
[DNAi]I

=
KD,i

[P]F+KD,i

(29)

where [DNAi]I, [DNAi]B and [DNAi]F are the probe concentrations in the input, 
free and bound libraries; [P]F is the free protein concentration; and KD,i is the 
dissociation constant that we want to measure. The sequencer does not measure 
p(B∣i) or p(F∣i) directly but, rather, gives the probe counts ki,I, ki,B and ki,F. The 
expectation values of these counts are given by

E[ki,I]
kI =

[DNAi]I
[DNA]I

= p(i)

E[ki,B]
kB =

[DNAi]B
[DNA]B

= p(i|B)

E[ki,F]
kF =

[DNAi]F
[DNA]F

= p(i|F)

(30)

where [DNA]I, [DNA]B and [DNA]F are the DNA concentrations in the respective 
fractions and kI, kB and kF are the sequencing depths of the libraries, which are 
treated as fixed experimental setting. To estimate the dissociation constants, note 
that

KD,i

[P]F
=

p(F|i)
p(B|i)

=
p(i|F)p(F)
p(i|B)p(B)

(31)

where p(B) and p(F) are the net fractions of DNA that is bound and free. Intuitively, 
these can fractions can be estimated from the data by finding the values that make 
the observed probabilities in Eq. (30) satisfy the sum rule:

p(i) = p(i, F) + p(i, B) = p(i|F)p(F) + p(i|B)p(B) (32)

ProBound can be configured to learn a KD model by analyzing the probe 
frequencies in the input, bound and free libraries (r = {I, B, F}). Specifically, 
configuring ProBound to use the non-cumulative enrichment model (Eq. (7)) with 
ρr = {0, 1, 0} and γr = {0, − 1, − 1} and restricting the activities to be constant across 
columns implements the binding probabilities in Eq. (29). With these settings, the 
dissociation constant is

KD,i = [P]F/Zbound,i (33)

Here, the free-protein concentration can be computed using

[P]F = [P]T − [DNA]I p(B) (34)

where [P]T is the total protein concentration. In most cases, [P]F is close to the 
more readily measured [P]T due to the low average affinity of randomized ligand 
libraries. However, here, p(B) is implicitly estimated by ProBound and can be 
computed by equating the expected counts in ProBound

E[ki,I] = ηI fi,I (35)

E[ki,B] = ηB fi,I p(B|i) (36)

E[ki,F] = ηF fi,I p(F|i) (37)
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with the corresponding expectation values in Eq. (30), computing the 
bound-to-input ratio, and using Bayes’ theorem to simplify, giving

p(B) =
kB
kI

ηI
ηB

(38)

To test the modeling assumptions (Fig. 4c), the probes were binned by the 
predicted KD,i, and, for each bin, the observed and predicted binding probabilities 
were computed using

p(B|i) =
E[ki,B]
E[ki,I]

ηI
ηB

(39)

Here, E[ki,B] and E[ki,I] were evaluated using the observed and predicted read 
counts in each bin.

Simulations. To test the theoretical consistency of the KD-seq, we developed 
simulations of the assay and analyzed the resulting reads with ProBound to see 
if the ‘ground truth’ parameters used in the simulations were recovered. In a first 
set of simulations, we computed the binding equilibrium for different TF and 
DNA library concentrations to test the theoretical consistency and robustness of 
our approach. A major goal of these simulations was to see if KD-seq suffers from 
being in the ‘titration regime’62. For single-ligand binding experiments, the titration 
regime occurs when the concentration of the constant fraction (for example, the 
DNA probes) greatly exceeds the dissociation constant of the interaction; in this 
regime, most of the varied fraction (for example, the TF) will be bound until the 
total concentration of the varied fraction exceeds that of the constant fraction. The 
resulting quick change in the (unobserved) free concentration makes extraction of 
accurate KD values challenging. We, thus, wondered if this phenomenon impacts 
KD-seq, which uses a library of randomized (mostly low-affinity) DNA probes.

To simulate this, we first enumerated all 10-bp DNA probe sequences and 
computed the KD values of these using the binding model for Dll shown in Fig. 4b 
as the ground truth. To model the coupled binding equilibrium, we first estimated 
the initial probe frequencies [DNAi]I by matching the base frequencies to those 
observed in the input library (28.8% A, 26.5% C, 14.4% G and 30.3% T) and then 
used the secant method to find the root of

[P]F = [P]T −

∑

i
[DNAi]I

[P]F
[P]F + KD,i

, (40)

and finally used the resulting value of [P]F combined with equations (29) and (30) 
to compute the relative concentrations of all probes in the input, bound and free 
libraries. Then, 106 sequences were sampled for each library using the multinomial 
distribution, and ProBound was finally used to learn a KD-model. This procedure 
was repeated for all combinations of [P]T and [DNA]I used in Fig. 4e. As expected, 
the fraction of bound TF molecules increased with DNA concentration (ranging 
between 0.2–1.1%, 1.0–5.5% and 4.8–24% in the simulations with 20 nM, 100 nM 
and 500 nM (Extended Data Fig. 8c)). Thus, although both the TF and total DNA 
concentrations exceed the KD for the strongest sequence, the concentration of such 
probes is very low (because a large majority of probes have low affinity; Extended 
Data Fig. 8b), and the titration regime can generally be avoided (also see ‘Practical 
guidelines’ below). Finally, the inferred KD values were very close to those predicted 
by the ground truth model (Fig. 8e), demonstrating the theoretical consistency of 
our approach.

In a second set of simulations, we investigated how slow binding kinetics of 
high-affinity probes might impact the final KD model. To this end, we modeled the 
binding kinetics of the library using

∂t[DNAi]B = kon,i[P]F[DNAi]F − koff,i[DNAi]B (41)

where kon,i and koff,i are the on-rates and off-rates for probe i. Because most protein 
is free even at equilibrium (see the equilibrium simulation above), we solved this 
differential equation under the assumption [P]F = [P]T, giving

p(B|i, t) ≡

[DNAi]B(t)
[DNAi]I

=
[P]T

[P]T + KD,i

(

1 − e−t(koff,i+[P]Tkon,i)
)

(42)

To simulate the scenario where high-affinity probes have the slowest kinetics, we 
assumed that kon is diffusion limited (and, thus, sequence independent) and that 
the sequence specificity is driven by variation in koff. After expressing koff,i in terms 
of the value for the highest-affinity sequence,

koff,i = koff,min
KD,i

KD,min
, (43)

the binding probability becomes:

p(B|i, t) =
[P]T

[P]T + KD,i

(

1 − e−koff,min t(KD,i+[P]T)/KD,min
)

(44)

Note that this probability only depends on kon and koff through KD, which is known, 
and koff,min. To test how robust KD-seq is to the value of the latter, we simulated 
experiments with koff,mint ∈ {0.001, 0.01, 0.1} (Extended Data Fig. 8f), analyzed 
the resulting reads using ProBound and compared the final KD model to the ground 
truth parameters used in the simulation (Extended Data Fig. 8g). This showed that 
the true model was recovered for t ≥ 0.1k−1

off,min, with even shorter incubation times 
being acceptable at high protein concentrations.

Experimental protocol. 6×His tagged Drosophila Dll protein lacking amino acids 
N terminal to its homeodomain (DllΔN) was purified by standard procedures. 
Next, 0.05% Tween 20 was included in the lysis buffer and in the elution buffer to 
prevent the target protein from sticking to plasticware. The purified protein was 
quantified by Bradford assay, using BSA as the standard. The 10mer R0 library was 
generated by annealing the library oligo (GTTCAGAGTTCTACAGTCCGACCTGG-
10N-CCAGGACTCGGACCTGGACTAGG) and the SELEX-R primer 
(CCTAGTCCAGGTCCGAGT), followed by a Klenow-mediated primer extension 
reaction. The library DNA was purified using Qiagen minElute columns and 
was quantified using NanoDrop. The SELEX procedure was largely the same 
as previously described8, except that a Cy5-labeled DNA probe, instead of a 
P32-labeled probe, was used as the marker to indicate where the bound and 
unbound fractions were. The Cy5-labeled DNA probe was generated by annealing 
a Cy5-labeled primer to a DNA probe with the desired DNA sequence, followed by 
Klenow reaction. EDTA was used to stop the reaction. The probe was directly used 
in the binding reaction, without further purification.

For each SELEX condition, 15 μl of protein solution (at 2× final concentration) 
in dialysis buffer (20 mM HEPES pH 8.0, 200 mM NaCl, 10% glycerol, 2 mM 
MgCl2, 0.05% Tween 20) was made. The library mixture was made by adding 
desired amount of the R0 library to 6 μl of 5× binding buffer (50 mM Tris-HCl 
pH 7.5, 250 mM NaCl, 5 mM MgCl2, 20% glycerol, 2.5 mM DTT, 2.5 mM EDTA, 
125 ng μl−1 of polydIdC, 100 ng μl−1 of BSA, 0.125% Tween 20) and filling to 
15 μl with water. The protein and DNA parts were mixed and incubated at room 
temperature for 30–40 minutes before loading the gel. For Cy5-labeled markers, 
15 μl of 200 nM DllΔN in dialysis buffer was mixed to 15 μl of DNA mixture (6 μl 
of 5× binding buffer, 8 μl of water and 1 μl of 200 nM probe) and incubated at room 
temperature for 30–40 minutes.

After running the gel, gel slices corresponding to the bound and unbound 
fractions were cut from the gel and were each place in a 500-μl tube with several 
needle poked holes at the bottom. The 500-μl tubes were each placed within a 
2-ml tube and spun at maximum speed at room temperature to smash the gel. 
Then, 650 μl of DNA extraction buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
1 mM MgCl2, 0.5 mM EDTA, pH 8.0) and 50 μl of 20% SDS were added to each 
smashed gel sample, and the tubes were rotated at room temperature for 2–4 hours. 
The tubes were then spun at maximum speed at room temperature for 2 minutes. 
Then, 650 μl of sample was transferred to a Spin-X filter column and spun at room 
temperature at the maximum speed for 2 minutes. The DNA in flow-through was 
purified by phenol chloroform extraction, followed by isopropanol precipitation. 
Then, 20 μg of glycogen was used to facilitate precipitation, and the DNA pellet was 
dissolved in 20 μl of Qiagen EB buffer.

Each purified SELEX DNA was properly diluted such that the following PCR 
program gave good library yield for all samples. The one-step library preparation 
was done in a 50-μl reaction, which contains 5 μl of properly diluted SELEX 
DNA, 10 nM of one of the eight SELEX-for primers, 10 nM of the common 
SELEX-rev primer, 1 μM of NEB universal primer for Illumina and 1 μM of 
selected NEB index primer for Illumina. PCR was done with the Phusion 
DNA polymerase (NEB), using the following program: one cycle of 98 °C for 
30 seconds; five cycles of 98 °C for 10 seconds, 60 °C for 30 seconds and 72 °C 
for 15 seconds; ten cycles of 98 °C for 10 seconds and 65 °C for 75 seconds; one 
cycle of 65 °C for 5 minutes; and hold at 4 °C. Amplified libraries were purified 
using 1.5 volume (75 μl) of AMPure beads and eluted with 15 μl of Qiagen EB 
buffer. The libraries were pooled and sequenced using Illumina NextSeq 550, 
following standard procedures. The forward primers consisted of left and right 
constant sequences (ACACTCTTTCCCTACACGACGCTCTTCCGATCT- and 
-GTTCAGAGTTCTACAGTCCGA, respectively), flanking a library-specific 
barcode: 1) --, 2) -AGAC-, 3) -TCAGAC-, 4) -CAGAC-, 5) -C-, 6) -GAC-
, 7) -AC- and 8) -TTCAGAC-. In addition, we used the reverse primer 
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-CCTAGTCCAGGTCCGAGT, 
the NEB universal primer AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTA-CACGACGCTCTTCCGATCT and the NEB index primer CAAGCAGA 
AGACGGCATACGAGAT-[6bp index]-GTGACTGGAGTTCAGACGTGTGCTC
TTCCGATCT.

EMSA validation. The same batch of the DllΔN protein that was used in the SELEX 
experiments was also used in the measurement of the absolute KD values of DllΔN 
to selected DNA sequences. The EMSA experiments were performed following 
regular protocol. In brief, the protein was diluted with dialysis buffer to 2× of the 
desired final concentration in a total volume of 15 μl. The DNA mixture was made 
by mixing 6 μl of 5× binding buffer, 8 μl of water and 1 μl of 200 nM Cy5-labeled 
DNA probe. The DNA probes had the same flanks as the 10mer SELEX library 
and the indicated middle 10 bp. The protein part and the DNA part were mixed 
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well (giving a final DNA probe concentration of 6.7 nM) and incubated at room 
temperature for 30–40 minutes before loading the 0.5× native TBE gel.

After running the gel, an image was taken using the Typhoon imager, and the 
band intensity was quantified using Fiji version 1.52n (Supplementary Table 5). In 
brief, each band was selected using the rectangle selection tool, and the selected 
regions were converted to histograms. A straight line was drawn at the bottom of 
each histogram, and the areas of the enclosed peak regions were quantified and 
used as band intensity.

For each probe, KD was finally estimated by fitting the binding probability

p(B; [P]T,a)

=

(

1 + 2KD
[P]T,a−[DNA]T−KD+

√
([P]T,a−[DNA]T−KD)2+4KD[P]T,a

)

−1
,

(45)

where [P]T,a is the total TF concentration in band a, and [DNA]T is the total DNA 
concentration, to the quantitated intensities yB,a and yF,a of the bound and free 
bands, respectively (Supplementary Table 5). Specifically, after introducing the 
band-specific intensity scaling factors αB and αF, we found the parameters that 
minimized the loss function

(KD, αB, αF)

=
∑

a

[

(

p(B; [P]T,a) − αByB,a
)2

+
(

(1 − p(B;[P]T,a)) − αFyF,a
)2
]

.
(46)

Practical guidelines. As with any assay, KD-seq can produce inaccurate 
measurements given unsuitable experimental conditions. One strength of KD-seq is 
that many such conditions can be diagnosed computationally. Below are practical 
guidelines for designing successful KD-seq experiments and for detecting problems, 
should they occur.

Robust probe depletion in the free library. For a KD-seq experiment to be 
successful, ProBound needs to estimate the net fraction of bound DNA p(B). 
Intuitively, ProBound accomplishes this by separately computing the relative 
probe frequencies in the input, bound and free libraries and then finding the value 
of p(B) that makes the relative frequencies satisfy the sum rule in equation (32) 
(technically, ProBound maximizes the likelihood of the full model, as detailed 
above). For this estimate to be robust, is important that some high-affinity probes 
have detectable depletion in the free library; otherwise, the input and free libraries 
are identical, and the sum rule is satisfied for p(B) = 0. This estimate becomes 
less robust in two experimental regimes. First, no probe will be depleted if the TF 
concentration is well below the KD of the strongest probe. Second, the depletion 
signal in the free library is reduced when [DNA]I ≫ [P]T because, at most, a small 
fraction of the library can be bound in this regime. An example of the latter is the 
experiment with 500 nM DNA and 100 nM TF, where only 2% of the library was 
bound. Computationally, low depletion in the free library is most easily detected 
using the enrichment plots in Fig. 4c.

Robust estimate of relative binding affinities. ProBound estimates relative 
KD values using both probe enrichment in the bound library and probe depletion 
in the free library. Thus, although saturation compresses the relative selection 
for high-affinity probes in the bound library (because all saturated probes 
have P(B∣i) ≈ 1), relative KD values can still be estimated because the saturated 
probes differ in depletion in the free library. However, because the number of 
reads corresponding to high-affinity probes decreases as these probes become 
increasingly saturated, excessive saturation (that is, [P]T ≫ miniKD,i) tends to 
make the KD estimates for the highest-affinity probes less robust. Examples of this 
include the experiments with 3,300 nM Dll in Fig. 4e. Excessive saturation is most 
easily detected using the enrichment plots in Fig. 4c.

Avoiding the titration regime. As discussed above, single-ligand KD 
measurements can be compromised when conducted in the ‘titration regime’62; if 
KD is much smaller than the ligand concentration (assuming this is the constant 
fraction), KD no longer corresponds to the protein concentration at which 50% 
of ligands are bound but must, rather, be estimated through non-linear curve 
fitting that models titration to estimate the free protein concentration. However, 
such curve fitting becomes increasingly error-prone as the ligand concentration 
increases. This regime should generally be avoided.

However, KD-seq has two advantages compared to single-ligand experiments: 
First, the vast majority of ligands have low affinity (see simulation above), and 
the concentration of high-affinity ligands is, therefore, much lower than the 
total ligand concentration. Thus, titration can be avoided even when the total 
library concentration substantially exceeds the smallest KD in the library. Second, 
ProBound estimates the fraction of ligands bound, which, in turn, can be used to 
estimate the fraction of protein bound (Equation (34)). This provides an internal 
measure to monitor titration effects. If more than 5–10% of the TF molecules 
are estimated to be bound (for example, experiment with 500 nM library and 
100 nM Dll in Fig. 4e), the assay should be repeated with decreased library 
concentration.

Binding equilibrium. For KD measurements to be accurate, it is important that 
the binding reaction has reached equilibrium62. In particular, high-affinity probes 
can have a low off-rate and, thus, take longer time to reach equilibrium. However, 

our simulations above indicated that KD-seq produces stable binding models 
after 10% of the naively expected equilibrium time (based on the off-rate for the 
highest-affinity probe). To understand this, note that Equation (42) can be used to 
express the equilibration time teq,i for probe i as

teq,i = k−1
off,i

1
1 + [P]T/KD,i

(47)

We, thus, see that saturated probes, which have [P]T/KD,i > 1, reach binding 
equilibrium faster than naively expected given k−1

off,i. This observation, combined 
with the experimental constraint that high-affinity probes should be at least 
moderately saturated (see above), explains the relative robustness of KD-seq with 
regard to incubation time. Nonetheless, when working with systems for which the 
off-rates are unknown, it is advisable to repeat the assay for multiple incubation 
times to validate that equilibrium has been reached.

Validating the binding curve. Although ProBound can estimate KD values 
using binding data for a single protein concentration, the method assumes 
that the binding probability follows Equation (29). However, deviations from 
this binding curve can occur—for example, due to cooperative binding at high 
protein concentrations. When characterizing a new protein, it can, therefore, be 
prudent to validate the binding curve by repeating the assay for multiple protein 
concentrations.

Multi-concentration input-versus-bound experiments. ProBound can learn a 
KD model by jointly analyzing the input and bound libraries of SELEX experiments 
conducted at different protein concentrations (Extended Data Fig. 7d). Intuitively, 
this approach uses low-concentration libraries (which ideally have a linear 
affinity-versus-binding relationship) to learn the relative binding affinities and 
high-concentration libraries (which should have saturated high-affinity probes) to 
determine the affinity scale. Although limited saturation of high-affinity probes in 
the lowest-concentration library can be acceptable as long as the relative-affinity 
model (which then mainly is constrained by the non-saturated lower-affinity 
probes) generalizes to the highest-affinity probes, such saturation should be 
avoided if possible. This effect may explain the slightly lower dissociation constant 
estimated in Extended Data Fig. 7d (which uses input/bound) compared to 
Extended Data Fig. 7c (which also uses the free library).

Peak-free motif discovery from ChIP-seq data. ProBound analysis. To analyze 
the GR ChIP-seq data from the IMR90 cell line47, we first aligned the (single-end) 
Input and ChIP reads to the genome and extracted a sufficiently long (200-bp) 
sequence downstream of the 5′-end genomic position of the mapped read. 
Next, we randomly sampled 106 reads from each library and constructed a 
count table containing the Input and ChIP read counts in the first and second 
columns, respectively. ProBound was then configured to model this table as a 
single-round SELEX experiment. Because GR binds DNA as a homodimer, we 
configured ProBound to impose reverse-complement symmetry while fitting 
free-energy parameters for the primary motif. We then iteratively added three 
additional binding modes to the model to capture the influence of potential 
co-factors. To analyze the GR ChIP-seq data from the murine hippocampus51, 
we followed a similar procedure and constructed one count table for each 
of the three CORT concentrations (sampling 105 sequences per library) and 
then configured ProBound to jointly model all count tables using a single 
reverse-complement-symmetric binding mode.

Other methods. Raw FASTQ files corresponding to the IMR90 GR ChIP and Input 
sequences from Starick et al.47 were downloaded from the European Nucleotide 
Archive using accession number PRJEB7372. SAM files of the input and ChIP 
sequences were created by aligning to the hg19 genome using bowtie2 (version 
2.4.4) with default settings.

HOMER: HOMER (version 4.11.1)63 with default settings was used to 
analyze the SAM files; ‘tag directories’ for both the ChIP and Input sequences 
were first created using makeTagDirectory. Next, the command 
analyzeChIP-Seq.pl Tagged_GR_ChIP/ hg19 -i Tagged_GR_
Input/ was executed to infer binding motifs.

MEME-ChIP: MACS2 (version 2.2.7.1)64 with default settings was used to 
discover enriched peak regions. Then, 500-bp genomic regions—250 bp upstream 
and downstream of the discovered peak centers—were extracted from the resulting 
BED files using bedtools. The MEME-ChIP webserver was used to analyze 
these sequences with default settings and the ‘Look for palindromes only’ option 
selected.

NoPeak: The NoPeak repository65 was downloaded from GitHub, and the 
SAM files were converted to BED files following the example in the repository: 
samtools view -bS GR_chip.sam ∣ bedtools bamtobed ∣ sort 
-k1,1 -k2n > GR_chip.bed.

These BED files were analyzed using NoPeak with default settings (kmer 
length = 8). This required 128 GB of RAM to complete; other kmer lengths were 
tried (>8) but failed as NoPeak ran out of memory.

Kinase-seq. ProBound analysis. In this assay, a library of peptide substrates Si is 
treated with a enzyme E, and the concentrations of the products Pi are quantified 
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using high-throughput sequencing (see below). This reaction can be modeled using 
Michaelis–Menten kinetics generalized to multiple substrates:

E + Si
kon,i
⇋
koff,i

E : Si →
kcat,i

E + Pi (48)

In the limit of low enzyme concentration, the reaction quickly reaches a 
quasi-steady state with

[E : Si] = [E][Si]/KM,i (49)

where KM,i = (koff + kcat,i) / kon,i is the Michaelis constant for substrate i. In this limit, 
the change in substrate concentration is given by

∂t[Si] = −keff,i[Si][E] (50)

where keff,i = kcat,i / KM,i is the catalytic efficiency. Integrating this equation yields

[Si](t) = [Si](0)e−keff,i
∫ t
0 [E](t

′)dt′ (51)

where [Si](0) is the substrate concentration right after the quasi-equilibrium was 
reached. The concentrations in the product library can then be expressed as

[Pi](t) = [Si]total
(

1 −

1 + [E](t)/KM,i

1 + [E](0)/KM,i
e−keff,iE(t)t

)

(52)

where [Si]total = [Si] + [E : Si] + [Pi] is concentration in the initial library, and 
E(t) = t−1 ∫ t

0 [E](t
′)dt′ is the time-averaged enzyme concentration. This can be 

simplified further by noting that only a small fraction of substrates are bound in the 
limit of low enzyme concentration

[E : Si]/[Si] = [E]/KM,i ≪ 1 (53)

and, thus,

[Pi](t) = [Si]total
(

1 − e−keff,iE(t)t
)

(54)

Note that the selection only differs between probes through keff,i. ProBound can, 
thus, model the assay using Eq. (8) with δ→−∞ and

Zbound,i,P = keff,iE(t)t (55)

Here, E(t) depends on both KD,i and [Si] throughout the reaction and is generally 
unknown. We here assume that most enzyme is free so that E(t) = [E]total; a lower 
(free) enzyme concentration would lead to a global rescaling of keff,i but not affect 
the relative efficiency or its sequence dependence.

Preparation of degenerate peptide library to profile tyrosine kinase specificity. The 
degenerate peptide library contained 11 residue sequences with five randomized 
amino acids flanking either side of a fixed central tyrosine residue. These sequences 
were fused to the eCPX bacterial surface display scaffold66. To clone this library, we 
first amplified the eCPX-coding sequence with a 3′ SfiI restriction site. This was 
fused to the random library in another PCR step using the following degenerate 
oligonucleotide: GCTGGCCAGTCTGGCCAG-NNSNNSNNSNNSNNStat 
NNSNNSNNSNNSNNS-GGAGGGCAGTCTGGGCAGTCTG, which contains a 
5′ SfiI site. The resulting amplified product was digested with SfiI restriction 
endonuclease, purified and ligated into the SfiI-digested pBAD33-eCPX plasmid, 
as described previously53. The ligation reaction was concentrated and desalted and 
then used to transform DH5α cells by electroporation. Transformed cells were 
grown overnight in liquid culture, and then the plasmid DNA library was extracted 
and purified using a commercial Midiprep kit.

Preparation of biotinylated antibody. The phosphotyrosine monoclonal antibody 
(pY20, conjugated to the fluorophore, perCP-eFluor 710, Invitrogen, cat. no. 
46-5001-42) was desthiobiotinylated before use in the specificity screen. The 
antibody was first purified away from BSA and gelatin by anion exchange using a 
salt gradient of 0 M NaCl to 1 M NaCl in 0.1 M potassium phosphate buffer. The 
fractions that eluted after 0.2 M NaCl were pooled and then buffer-exchanged into 
0.1 M potassium phosphate by dilution and centrifugal filtration. The antibody 
was then labeled in a 200-μl small-scale reaction using the DSB-X labeling kit 
(Molecular Probes) according to the manufacturer’s instructions. Concentration of 
the antibody was monitored by its absorbance at 490 nm to determine percentage 
yield. The average final concentration of the antibody was around 0.2 mg ml−1. 
The specificity of the antibody was validated using cells expressing displayed 
peptides. Cells treated with a tyrosine kinase without ATP show no background 
antibody staining. By contrast, cells expressing displayed peptides, treated with 
tyrosine kinase and 1 mM ATP, show increasing antibody staining as a function of 
phosphorylation time.

High-throughput specificity screen. The catalytic domain of the human tyrosine 
kinase c-Src was screened against the degenerate peptide library as described 

previously53—one main difference being the use of magnetic beads to isolate 
phosphorylated cells rather than fluorescence-activated cell sorting. In short, 
Escherichia coli MC1061 cells transformed with the library were grown to an 
optical density of 0.5 at 600 nm. Expression of the surface-displayed peptides was 
induced with 0.4% arabinose for 4 hours at 25 °C. After expression, the cell pellets 
were collected and subject to a wash in PBS. Phosphorylation reactions of the 
library were conducted with 500 nM of purified c-Src and 1 mM ATP in a buffer 
containing 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM TCEP and 
2 mM sodium orthovanadate. Time points were taken at 5 minutes, 20 minutes 
and 60 minutes. Kinase activity was quenched with 25 mM EDTA, and the cells 
were washed with PBS. Kinase-treated cells were labeled with roughly 0.05 mg ml−1 
of the biotinylated pY20 antibody for 1 hour and then washed again with PBS 
containing 0.2% BSA.

The phosphorylated cells were isolated with Dynabeads FlowComp Flexi 
(Invitrogen) following the manufacturer’s protocol. In total, two populations were 
collected for each time point: cells that did not bind to the magnetic beads and 
eluted after each wash (unbound) and cells that bound to the magnetic beads and 
eluted after the addition of the release buffer (bound). After isolation of these two 
populations, the cell pellet was collected, resuspended in water and then lysed 
by boiling at 100 °C for 10 minutes. The supernatant from this lysate was then 
used as a template in a 50-μl PCR reaction to amplify the peptide codon DNA 
sequence using the same forward and reverse TruSeq-eCPX primers as described 
previously53. The product of this PCR reaction was then used as a template for 
a second PCR reaction to append unique 5′ and 3′ indices. The resulting PCR 
products were purified by gel extraction, and the concentration of each sample was 
determined using QuantiFluor dsDNA System (Promega). Each sample was pooled 
to equal molarity and sequenced by paired-end Illumina sequencing on a MiSeq 
instrument. The deep sequencing data were processed as described previously53,67. 
The paired-end reads were merged using FLASH (version FLASH2-2.2.00)68, and 
the adapter sequences were trimmed using the software Cutadapt (version 3.5)69. 
The remaining sequences were translated into amino acid codes, and sequences 
containing stop codons were removed.

Validation measurement of phosphorylation rates. To validate predictions made by 
ProBound, phosphorylation rates were determined in vitro using purified c-Src 
and 11 synthetic peptides (purchased from Synpeptide). The phosphorylation 
reactions were carried out at 37 °C using 500 nM purified c-Src and 100 μM peptide 
in a buffer containing 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM 
TCEP and 2 mM sodium orthovanadate. Reactions were initiated by the addition 
of 1 mM ATP, and, at various time points, 100 μl of the solution was quenched with 
25 mM EDTA (every 10 seconds for the faster reactions, every 2–10 minutes for the 
slower reactions). Each reaction was carried out in triplicate.

The concentration of the substrate and the phosphorylated product at each 
time point was determined by reversed-phase HPLC with UV detection at 214 nm 
(Agilent 1260 Infinity II). A 40-μl volume of the quenched reaction was injected 
onto a C18 column (ZORBAX 300SB-C18, 5 μm, 4.6 × 150 mm). A gradient system 
was used with solvent A (water and 0.1% TFA) and solvent B (acetonitrile and 0.1% 
TFA). Elution of the peptides was performed at a flow rate of 1 ml min−1 using the 
following gradient: 0–2 minutes: 5% B; 2–12 minutes: 5–95% B; 12–13 minutes: 
95% B; 13–14 minutes: 95–5% B; and 14–17 minutes: 5% B. The peak areas of 
the substrate and product were calculated using Agilent OpenLAB ChemStation 
software (version C.01.09). The initial rate for each peptide was obtained by fitting 
a straight line to a graph of peak area as a function of time in the linear regime of 
the reaction progress curve and calculating the slope of the line.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data generated during the current study have been deposited in the 
Gene Expression Omnibus under accession number GSE175942. Source data for 
Figs. 4d and 6d are provided in Supplementary Tables 2 and 5.

Code availability
TF binding models and software for using them can be accessed at motifcentral.
org. The ProBound software and a dedicated compute server for running 
ProBound are available at probound.bussemakerlab.org.
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Extended Data Fig. 1 | integrative analysis of multiple TF SeLeX datasets produces consensus binding models. (a) Schematic contrasting ProBound’s 
multi-experiment learning strategy that builds a consensus model for a TF by simultaneously training on all relevant SELEX data for the TF with the 
traditional approach that builds independent models for every individual dataset. (b) Generalization performance of consensus binding models (y-axis) 
and single-experiment models (x-axis) on three different metrics (scatterplots). Points correspond to models trained on individual experiments and lines 
connect experiments used to build the corresponding consensus model. Points above the diagonal correspond to instances where the consensus model 
outperforms single-experiment models.
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Extended Data Fig. 2 | integrative modeling to quantify TF binding cooperativity. (a) Schematic table describing the combinations of TFs assayed in five 
experiments (top) that were jointly analyzed to produce binding models of the different monomers and their complexes (bottom) by explicitly defining 
which models can form in each experiment (+ sign). (b) Distribution of probes (top) and the predicted relative contribution of every recognition mode 
(bottom) as a function of predicted binding selection strength (x-axis) in the first round of selection from SELEX-seq data assaying Hth, Exd, and UbxIV. 
(c) Integrative modeling of HT-SELEX and CAP-SELEX data for MEIS1 and DLX3 (schematic table) yields binding models for the monomers (energy logos) 
and configuration-dependent binding cooperativity for the MEIS1:DLX3 complex (same circle plot representation as in Fig. 3b). The bottom right logo 
shows the specificity of MEIS1:DLX3 for the most stable configuration (connecting arrow), aligned to a sequence previously crystallized with MEIS1:DLX31. 
(d) Table showing the availability of CAP-SELEX data for different TF-TF combinations. The 10 TFs with the most identified co-factors are included, and 
numbers indicate replicate count. (e) Distribution plot comparing the binding cooperativity inferred by ProBound at the configurations that were identified 
as cooperative in the original CAP-SELEX study (red line) and at all other configurations (gray line). The models were trained on the CAP-SELEX data 
tabulated in (d) and are shown in Extended Data Figure 3.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Binding models learned through joint analysis of CAP-SeLeX and HT-SeLeX data. Models are displayed as in Extended Data 
Figure 2c. Red and blue arrows indicate the configurations identified as cooperative in the original analysis of each dataset. These configurations (which 
correspond to the red line in Extended Data Figure 2e) were identified by aligning the inferred monomer binding modes to the position-probability 
matrices reported in the original study and selecting the configuration that minimizes the KL divergence.
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Extended Data Fig. 4 | Learning methylation-aware binding models from epiSeLeX-seq data. (a) Alphabet used to represent normal and methylated 
base pairs. (b) Same as Extended Data Figure 2a, but showing the combinations of ATF4, CEBPγ, and normal and methylated DNA that were included in 
each experiment and the resulting complexes that were modeled. (c) K-mer enrichment analysis for the observed ATF4 EpiSELEX-seq read counts (left), 
the counts predicted by a mononucleotide-only model (middle), and the counts predicted by a mono- and di-nucleotide model (right). Each scatterplot 
compares the 8-mer enrichment observed in the normal (x-axis) and methylated (y-axis) libraries. Every point represents an 8-mer and is colored 
according to the legend; color is assigned based on a 6bp matching substring between the 8mer and the IUPAC code.
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Extended Data Fig. 5 | extending epiSeLeX-seq to measure the impact of 5hmC and 6mA on CeBPγ binding. (a) Schematic table describing the factors, 
library and binding model used in analyzing the extended EpiSELEX-seq assay (cf. Extended Data Figure 4b). (b) K-mer enrichment analysis comparing 
normal and modified EpiSELEX-seq libraries, computed and displayed as in Extended Data Figure 4c.
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Extended Data Fig. 6 | eMSA validation measurements. (a) EMSA experiments for Dll and four DNA probes. (b) Fraction bound DNA probes predicted 
by the equilibrium binding model (lines, computed using indicated KD values and equation (45)) and estimated based on EMSA band intensities (dots).
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Extended Data Fig. 7 | The robustness of KD-seq. (a) Comparison between EMSA-measured (dashed line) and different model-predicted (points) KD 
values for four binding probes. Various model training strategies (x-axis) used different sequencing libraries: the input/bound/free libraries from a single 
experiment (left); the input/bound/free libraries from multiple experiments at different TF concentrations (center); or the input/bound libraries from 
multiple experiments at different TF concentrations (right). (b) Fraction of DNA bound (top) and fraction of TF bound (bottom) as inferred by ProBound 
when learning binding models from individual KD-seq experiments (cf. left points in (a)). (c) Example KD model (left) and observed and predicted probe 
enrichments (right; cf. Fig. 4c) for a model from the central points in (a). (d) Same as (c), but for a model from the right points in (a). (e) Same as (c), but 
only using the bound/free libraries (analogous to Spec-seq). This model can only predict relative KD, as the bound/free ratio is proportional to KD for all TF 
concentrations. In addition, the model predicts enrichment in the data up to a global rescaling factor. (f) Same as (d), but for a model derived from RNA 
Bind-n-Seq data for RBFOX2.
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Extended Data Fig. 8 | Testing theoretical validity of KD-seq using equilibrium and kinetic simulations. (a) Plot showing bound fraction vs. binding affinity 
in simulation of equilibrium binding. ‘Ground truth’ binding affinities were computed using the binding model in Fig. 4b (KD = 3.9nM). Lines correspond 
to simulations at different total TF concentrations. (b) Distributions of binding affinities in the input, bound and free libraries. Vertical lines indicate the 
median affinity in each library. (c) Comparison of the bound TF fraction in the simulation (‘truth’) vs. the fraction inferred by ProBound after analyzing the 
resulting synthetic reads. Each dot corresponds to a simulation with a unique [Dll]/[TF] combination, colored by the DNA concentration. (d) Same as (c) 
but showing the net bound DNA fraction colored by TF concentration. (e) KD value for the highest-affinity sequence inferred from the synthetic data. (f) 
Same as (a) but showing the fraction of DNA bound in kinetic simulations using different incubation times t. koff,min is the off-rate for the highest-affinity 
probe. (g) KD value for the highest-affinity sequence inferred using synthetic data from the kinetic simulations.
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Extended Data Fig. 9 | Comparison of gR binding models learned using different algorithms. Top: Binding models inferred by peak-based methods 
(MEME-ChIP and HOMER) and peak-free methods (ProBound and NoPeak) from the GR ChIP-seq data published in Starick et al. (2015). For MEME-ChIP, 
the reverse-complement symmetry setting was activated. Bottom: Comparison of ChIP-based and SELEX-based binding models for GR, displayed as in Fig. 
5a. Because the binding models generated by MEME-ChIP and HOMER contain base probabilities p, the negative logarithm of these values were compared 
to the ΔΔG/RT values from the SELEX model. None of the binding models found by NoPeak matched the GR consensus sequence.
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Extended Data Fig. 10 | Composition of the Kinase-seq libraries. (a) Bar chart showing the number of reads and unique sequences in each sequencing 
library. (b) Sequence logos showing the amino acid frequencies (left) and enrichments (right) at each position in each library.
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