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Transcription factors (TFs) control gene expression by binding to
genomic DNA in a sequence-specific manner. Mutations in TF
binding sites are increasingly found to be associated with human
disease, yet we currently lack robust methods to predict these
sites. Here, we developed a versatile maximum likelihood frame-
work named No Read Left Behind (NRLB) that infers a biophysical
model of protein-DNA recognition across the full affinity range
from a library of in vitro selected DNA binding sites. NRLB predicts
human Max homodimer binding in near-perfect agreement with
existing low-throughput measurements. It can capture the speci-
ficity of the p53 tetramer and distinguish multiple binding modes
within a single sample. Additionally, we confirm that newly iden-
tified low-affinity enhancer binding sites are functional in vivo, and
that their contribution to gene expression matches their predicted
affinity. Our results establish a powerful paradigm for identifying
protein binding sites and interpreting gene regulatory sequences
in eukaryotic genomes.
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Afundamental goal of genome science is to predict gene ex-
pression directly from a DNA sequence, which, in turn,

requires identification of all relevant transcription factor (TF)
binding sites. This is a challenging problem, in part, because TFs
often form multiprotein complexes that interact with DNA over
many base pairs. Since favorable molecular contacts accumulate
over the entire protein–DNA interface, binding to an optimal
DNA sequence can be many orders of magnitude stronger than
nonspecific binding. Recent studies have demonstrated that TF
binding sites in enhancers can influence gene expression levels in
vivo even if their affinity is much lower than optimal (1, 2). Thus,
decoding noncoding regulatory sequences requires accurate
quantification of TF binding over the entire range of affinities.
However, currently available methods fail to identify low-affinity
sites from the underlying DNA sequence (1).
How a particular TF is distributed along the genome can be

probed using chromatin immunoprecipitation followed by se-
quencing (3–5). However, the presence of many other chromatin-
associated factors in vivo severely complicates the relationship
between sequence, affinity, and binding. Binding specificity pro-
filing using in vitro assays has proven to be a fruitful alternative.
Although such experiments may not capture the full complexity of
the interactions between TFs and DNA that occur in cells, they
allow the innate preferences of TFs to be assayed in parallel for a
large number of DNA oligomers. Pertinent methods include
protein binding microarrays (6, 7), bacterial 1-hybrid assays (8),
mechanically induced trapping of molecular interactions [MITOMI
(9, 10)], and systematic evolution of ligands by exponential en-
richment followed by massively parallel sequencing [SELEX;
HT-SELEX/SELEX-seq/SMiLE-seq (11–14)].

Of the existing in vitro protein-DNA recognition profiling
technologies, SELEX holds the greatest promise for the full
characterization of TF binding specificities. In principle, a single
round of affinity-based DNA ligand enrichment should provide
optimal information (15), because iterative selection causes ex-
ponential suppression of low-affinity ligands and amplifies ex-
perimental error. In practice, however, first-round SELEX data
are difficult to analyze because the expected number of times a
DNA ligand is observed decreases exponentially with its length.
As a result, oligomer-based enrichment tables derived from
SELEX data selected over multiple rounds (12, 13) have failed
to detect functional low-affinity binding sites (1).
Here, we have overcome these limitations by combining a

biophysical model of protein–DNA interaction with a statistical
model of sequencing read selection within a maximum likelihood
framework. This model allows us to define DNA binding speci-
ficity across the full range of protein-DNA affinities over arbi-
trarily large DNA footprints using only a single round of SELEX
data. This capability sets it apart from other computational
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methods that have been proposed for SELEX analysis based on
biophysical principles (11, 16). Among the most recent of these,
BEESEM (17) relies on enumeration of all possible DNA se-
quences of a given length for its numerical optimization, which,
in practice, limits its application to a 12-bp footprint; SelexGLM
(18) overcomes this footprint limitation by ignoring probes that
can be bound at multiple offsets, which limits the accurate
quantification of low-affinity binding.
We rigorously characterize the performance of our method,

which we named No Read Left Behind (NRLB), using both in
vitro and in vivo tests and demonstrate that NRLB provides
highly accurate estimates of binding affinity and outperforms
existing methods on the quantification of low-affinity binding
sites. Most significantly, we show that NRLB quantitatively
predicts the contribution of ultra-low-affinity binding sites in two
Drosophila melanogaster enhancers to gene expression in vivo.
Our findings demonstrate that NRLB analysis of SELEX data
provides a robust, scalable, and quantitative method for identi-
fying functional in vivo binding sites and for defining relative
binding affinities for any TF–DNA complex.

Results
Description of the NRLB Method. NRLB uses every DNA sequence
observed after a single round of SELEX enrichment to characterize
the relative affinities of all binding sites, from the optimal site all of
the way down to those sites that are bound nonspecifically. At the
core of our method is an equilibrium thermodynamics model of
protein–DNA interaction (Fig. 1A) used previously to analyze
protein binding microarray data (11, 19–21). Assuming that TF
binding is affected by a DNA sequence over K base pairs, this
model maps each of the 4K possible bound sequences S to a relative
binding free energy ΔΔGðSÞ=ΔGðSÞ−ΔGðS0Þ, where S0 is a
fixed reference sequence usually chosen to be the highest-affinity
sequence. The corresponding relative binding affinity is given by
Ka,  rel = expð–ΔΔGðSÞ=RTÞ, with R denoting the ideal gas con-
stant and T the absolute temperature. A linear relationship is
assumed between the binding free energy and the various sequence
features, ϕ, that distinguish sequence S from the reference se-
quence (usually taken to be the optimal sequence):

ΔΔGðSÞ
RT

=
X
ϕ

βϕXϕðSÞ.

Here, βϕ represents the effect of each feature, ϕ, on the binding
free energy, as indicated by Xϕ(S), which equals 1 if S contains
the feature and 0 if it does not. The set of features always in-
cludes all possible mononucleotide substitutions (“mononucleo-
tide model”). However, dependencies among pairs of adjacent
nucleotides can optionally also be taken into account (“dinucle-
otide model”). The dinucleotide model has the potential to im-
prove prediction, partly because it better captures the effect of
variation in DNA shape on binding (22).
The protein–DNA interaction model is embedded in a sta-

tistical model of the SELEX method. Each DNA ligand in the
initial library of a SELEX experiment consists of a variable re-
gion of L base pairs surrounded by constant flanks, resulting in
4L possible ligands. The input data consist of the complete set of
reads sequenced from a random library of DNA ligands at
“round zero” (R0) and after one cycle (R1) of affinity-based
selection (Fig. 1B). Significantly, the observed distribution of
sequences in the initial R0 library f0(S) is not entirely random;
presumably, the processes associated with library generation
(probe synthesis, double-stranding, and PCR amplification) in-
troduce sequence-specific biases. We explicitly capture these
biases using an oligomer feature-based, log-linear multinomial
model (Methods). This is significantly more accurate (SI Ap-
pendix, Fig. S1) than the approach we used previously (13).

Binding by the TF complex at various offsets and/or orienta-
tions within a probe can contribute to its selection. In the ab-
sence of saturation, the frequency f1(S) of sequence S in the
R1 library is proportional both to its frequency f0(S) in R0 and to
the relative affinity with which it is bound:

f1ðSÞ∝ f0ðSÞ
X
v

"X
m

eΔΔGmðSvÞ=RT + eΔΔGns=RT

#
.

Here, Sv denotes the bound subsequence of length K for “view” v
on the probe sequence of length L (Fig. 1A). Explicitly accounting
for nonspecific binding (ΔΔGns=RT) is essential to achieve accu-
rate prediction of relative affinities. Moreover, since the same TF
complex may bind DNA in different configurations, the model can
be optionally extended to a weighted sum over multiple binding
modes m in parallel (Methods). Finally, a multinomial distribution
relates f1(S) to the observed (and unobserved) R1 counts of all 4L

unique sequences S. In this formalism, every unique sequence S
can be considered its own “category.”
The coefficients of the protein-DNA recognition model (βϕ

and βns) are estimated using a likelihood maximization procedure.

A

B

Fig. 1. Overview of the NRLB algorithm for modeling SELEX data. (A) Bio-
physical model underlying NRLB uses a feature-based representation of
binding free energy (Top) and a sliding window sum over all possible
binding locations or views v in the probe (Bottom). Mononucleotide free
energy parameters βϕ can be represented using an energy logo (19). The
occurrence of sequence feature ϕ in subsequence Sv is represented by the
indicator Xϕ (gray matrix). (B) Schematic diagram illustrating SELEX-seq li-
brary construction and analysis workflow.
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Despite the conceptual simplicity of our approach, it was nec-
essary to develop tailored dynamic programming techniques and
dedicated nonlinear optimization methods to make it feasible to
fit the model in an efficient and robust manner. A detailed de-
scription is provided in SI Appendix, Supplemental Methods.

Cross-Platform Validation Shows That NRLB Accurately Models Binding
Specificity over the Full Affinity Range. The widely studied human
basic helix–loop–helix (bHLH) protein MAX is one of the few
TFs whose binding specificity has been simultaneously character-
ized for many DNA ligands by the “gold-standard” microfluidics-
based MITOMI assay (9). It has also been characterized by the
bead-based HT-SELEX (23, 24), EMSA-based SELEX-seq [Zhou
et al. (22) and this study (Methods)], and microfluidics-based
SMiLE-seq (14) platforms. To assess the biophysical accuracy of
NRLB predictions, we constructed models on these datasets and
compared their predictions for 255 different DNA probes with the
observed ΔΔG/RT values obtained from the MITOMI assay.
Strikingly, when fit to R1 SMiLE-seq data, an NRLB model with
dinucleotide features and a nonspecific binding term (46 in-
dependent parameters) achieves near-perfect agreement with
MITOMI measurements spanning a 160-fold (ΔΔG/RT = 5)
range of binding affinity (R2 = 0.93; Fig. 2 A and C). This level of
agreement is significantly better (Fig. 2C; P = 4.7 × 10−11, Fisher’s
r-to-z transformation) than for a model with mononucleotide
features (13 parameters; R2 = 0.79; Fig. 2B) fit to the same data.
Importantly, including nonspecific binding is essential to achieve
good agreement (SI Appendix, Fig. S2A), because the R1 library is
still dominated by low-affinity probes. Models for the same MAX
homodimer constructed from the alternative SELEX-seq and HT-
SELEX platforms display a slightly lower level of agreement with

the MITOMI standard (Fig. 2C and SI Appendix, Fig. S2 B–E).
SELEX data can be significantly subsampled before performance
degrades, although, as expected, a larger number of reads is re-
quired to fit dinucleotide than mononucleotide-only models (SI
Appendix, Fig. S3).

Capturing Specificity over the Full Binding Site of Full-Length p53
Tetramers. Because NRLB fits ΔΔG/RT coefficients directly to
SELEX reads, there is no limit on the size of the footprint over
which binding specificity can be modeled. This allows analyses of
complexes such as tetramers of tumor suppressor protein p53. A
previous study (25) highlighted the role of the C-terminal do-
main (CTD) of p53 in altering its binding preferences in vivo,
although it remained unclear if the CTD impacted the binding
preferences of p53’s DNA binding domain (DBD). To further
elucidate the CTD’s role in binding, we used SELEX-seq and
NRLB to analyze both full-length wild-type (WT) p53 and a
version (Δ30) from which the CTD has been deleted (26). As
expected, WT p53 displayed very poor enrichment after a single
round of affinity-based selection: Only 420 of the 16.4 million
R1 reads match the binding consensus RRRCATGYYYRRR-
CATGYYY (R = [A,G], Y = [C,T]) (27). Despite the high de-
gree of nonspecific binding, a dinucleotide-based, multiple-binding
mode NRLB model (discussed below) uncovered WT’s specific
binding preferences over a 24-bp footprint (Fig. 2D). A direct
comparison between the WT and Δ30 models (SI Appendix, Fig.
S4A) shows that their coefficients are highly correlated (R2 = 0.84;
SI Appendix, Fig. S4B), confirming that the CTD does not alter the
DBD’s specific binding preferences. In addition, sampling of binding
sequences (Methods) indicate that the ratio between nonspecific and
optimal binding affinity is nearly two orders of magnitude larger for

A

D E

B C

F

Fig. 2. NRLB models accurately quantify binding affinity over large footprints. (A) Scatterplot comparing the binding energy of human MAX to 255 DNA
probes measured using MITOMI (9) (y axis) with the binding energies predicted by an NRLB mononucleotide and dinucleotide model trained on R1 SMiLE-seq
data (14) with nonspecific binding (x axis). (Inset) Energy logo representation (19) of the NRLB model. Color denotes the number of substitutions relative to
the optimal sequence. Pearson (r) and Spearman rank correlation (ρ), along with the number of data points (n), are indicated. (B) Same as A, but using only
mononucleotide features. (C) Bar chart showing the correlation between measured and modeled MAX binding energies, computed as in A, for different
models. The NRLB models were trained on HT-SELEX, SELEX-seq, and SMiLE-seq datasets, and the DeepBind (30) model was trained on HT-SELEX data for
human MAX (compare SI Appendix, Fig. S2). dinuc., dinucleotide; mono., mononucleotide. (D) Energy logo for an NRLB model with dinucleotide features
trained on R1 SELEX-seq data for full-length WT p53. In A, B, and D, the energy logo represents the net effect of each single-base mutation of the optimal
sequence. (E) Comparison between NRLB and DeepBind performance when classifying ENCODE ChIP-seq peaks using models trained on HT-SELEX data (23).
Each point represents the performance of the respective algorithms for a particular TF in terms of area under the receiver operating characteristic curve
(AUROC; Methods). N.S., not significant. (F) Performance comparison for the same NRLB and DeepBind models when predicting the enrichment of probe
counts between R0 and R1 in a more deeply sequenced replicate of the same dataset (24). Each point represents the performance of the respective algorithms
for a particular TF in terms of root-mean-square deviation (RMSD; Methods). Statistical significance was assessed using a Mann–Whitney U test.
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WT than Δ30, supporting previous conclusions that the CTD en-
hances nonspecific binding.

Analysis of Exd-Hox Heterodimer Data Uncovers Flanking Specificity.
In a previous study, we performed SELEX-seq to probe the
binding specificity of D. melanogaster Extradenticle (Exd)-Hox
heterodimers (13). Using oligomer enrichment analysis after
multiple selection rounds, we uncovered a latent specificity in
Hox proteins when they bind in the presence of the cofactor Exd
(13). Here, we applied NRLB to the R1 data from the same
study and found models that recover this phenomenon (Fig. 3A),
including all of the information previously captured using olig-
omer tables (Fig. 3B and SI Appendix, Figs. S5 and S7). Unlike
oligomer enrichment approaches, feature-based model fits select
a single “binding frame” among various equivalent (shifted and/
or reverse-complemented) representations of the binding site;

this has the advantage of yielding a model that is consistently
structurally interpretable with reference to the protein–DNA
interface (Fig. 3C). In a biological finding, our Exd-Hox models
indicate that the sequence specificity extends well outside the
previously reported 12-bp footprint (13). We validated this ex-
plicitly by performing competitive EMSAs with sequences con-
taining identical 12-bp cores but with different flanks (SI Appendix,
Fig. S6). Together, these results show that NRLB models are more
sensitive and informative than oligomer enrichment tables.

Identification of Alternative Binding Modes in a Single SELEX Library.
When we used NRLB to reanalyze R1 SELEX-seq libraries (13)
where Hox proteins were assayed in the absence of Exd, it
yielded the expected monomer motifs (SI Appendix, Fig. S8,
Monomer Data). However, a fit to the R1 heterodimer library
for Exd-Proboscipedia (Pb) yielded a motif indicative of mono-
meric rather than heterodimeric binding (Fig. 4A). Indeed, a
multiple binding mode fit to the same Exd-Pb data recovers both
the Pb monomer motif and the expected Exd-Pb heterodimer
motif (Fig. 4A); this yielded a small yet significant increase (P <
1 × 10−16, Fischer’s r-to-z transformation) in the agreement
between observed and expected oligomer counts and, at the
same time, greatly improved the interpretation of the data (SI
Appendix, Fig. S9). Comprehensive multimode analysis of all of
the Hox-only and Exd-Hox data yields models with at least two
binding modes for each R1 library (SI Appendix, Fig. S8, Heter-
odimer Data). For some Exd-Hox datasets, NRLB also discovers a
motif indicative of Exd monomer binding (SI Appendix, Fig. S8,
Bottom). NRLB can also be used to analyze in detail how a TF
may dimerize with alternative partners. For example, the basic
leucine zipper (bZIP) proteins ATF4 and C/EBPβ can bind either
as homodimers or heterodimers (28). We performed SELEX-seq
with a mixture of these proteins and generated new R1 libraries.
Simultaneously fitting multiple binding modes to these data re-
covered the heterodimer and both homodimer motifs (Fig. 4B).
Moreover, the homodimer models quantitatively agree with NRLB
fits to R1 SELEX-seq libraries, where ATF4 and C/EBPβ were
assayed separately (R2 = 0.735 and R2 = 0.476, respectively; SI
Appendix, Fig. S10). Together, these results show that NRLB can
identify reliable motifs for multiple binding modes in mixtures of
two distinct but interacting TFs. It remains to be seen whether
NRLB can be applied to even more complex mixtures.

NRLB Enables Improved Quantification of Suboptimal Binding. It is
not yet clear whether the quantitative biophysical models derived
from in vitro data are useful for improving predictions of in vivo
binding. Recent studies (29, 30) have considered the ability of
models to make binary predictions regarding the presence or
absence of peaks in ENCODE ChIP-seq data (5) from the un-
derlying DNA sequence (29). By this metric, the “deep learning”
algorithm DeepBind (30) was recently shown to outperform both
MEME (31) and the method of Jolma et al. (12) when trained on
HT-SELEX data for a set of several dozen human TFs (23). We
compared NRLB with DeepBind using the same measure of
performance (details about the training of NRLB on HT-
SELEX data are provided in Methods and SI Appendix, Fig.
S11). Comparison of the area under the curve (AUC) for various
TFs shows that NRLB does as well as DeepBind [Fig. 2E and SI
Appendix, Figs. S12 (overview) and S14 (details)]. However, the
binary ChIP-seq peak classification metric may not accurately
distinguish between weak and nonspecific binding. To quantita-
tively assess model performance in this regime, we compared
ΔΔG predictions made using models trained on human Max HT-
SELEX data with the MITOMI gold standard. Surprisingly, by
this metric the DeepBind model showed dramatically poorer
agreement with MITOMI (R2 = 0.07; Fig. 2C and SI Appendix,
Fig. S2F) than did the NRLB model (R2 = 0.71; Fig. 2C and SI
Appendix, Fig. S2D).

A B

C

Fig. 3. NRLB produces precise, parsimonious, and informative representa-
tions of TF behavior. (A) Crystal structure (33) and dinucleotide NRLB models
for Exd-Hox heterodimers; red boxes capture previously described differ-
ences in spacer preference between Hox proteins from different subclasses,
which correspond to differences observed in crystal structures (13). At 18 bp,
NRLB models capture a larger footprint than the 12-bp oligomer enrichment
tables (black bracket) that were used by Slattery et al. (13). (B) Scatterplot
showing the frequencies of observed 10mer counts in R1 Exd-Scr SELEX-seq
data versus the frequencies of the same 10mers predicted by the NRLB
model in A. Only 10mers with a count of 100 or more were included. (C)
Schematic illustrating how oligomer enrichment tables tend to display sig-
nificant enrichment over multiple offsets, thus confounding structural in-
terpretation, and how feature-based models ensure a consistent definition
of the base pair position in the protein–DNA interface. In all panels, Exd-Hox
SELEX-seq data from Slattery et al. (13) were used. The Protein Data Bank ID
code of the Exd-Scr crystal structure is 2R5Y (33). A truncated version of the
Exd-Scr model in B and oligomer enrichment tables for R1 Exd-Scr data from
Slattery et al. (13) are used to predict relative affinities.
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To more comprehensively assess the quantitative performance
of DeepBind and NRLB over the full affinity range, we de-
veloped in vitro performance metrics to compare the ability of
both HT-SELEX trained models to explain R1 probe frequen-
cies from a more deeply sequenced technical replicate of the
same dataset (24); details are provided in Methods. Unlike
DeepBind, NRLB explicitly accounts for R0 biases; as such, we
ignored the contribution of NRLB’s bias model f0(S) in our
predictions to ensure a fair comparison. Even under these con-
straints, NRLB again significantly outperformed DeepBind when
attempting to predict read enrichment between R0 and R1 [Fig.
2F and SI Appendix, Figs. S13A (overview) and S15 (details)] or
the observed probe frequency in R1 [SI Appendix, Figs. S13B
(overview) and S15 (details)]. The full NRLB model (which ac-
counts for R0 bias) predicts the observed R1 probe frequencies
almost perfectly [SI Appendix, Figs. S13C (overview) and
S15 (details)].

Identification of Validated D. melanogaster Hox Binding Sites. To
further test the biological relevance of our NRLB models, we
asked how well they detect Exd-Hox binding sites that were
previously validated using in vivo reporter assays in D. mela-
nogaster. We started with the well-characterized 37-bp fkh en-
hancer element, fkh250, which contains a low-affinity Exd-Hox

binding site (AGATTAATCG) preferred by Exd-Scr (32). Mu-
tating two base pairs in this element [fkh250con, AGATTTATGG
(mutations underlined)] creates an Exd-Hox consensus site that
is also bound by Exd-Antp, Exd-UbxIa, and Exd-AbdA hetero-
dimers (32). NRLB captures these Hox preferences when scoring
both fkh250 and fkh250con (Fig. 5A). Moreover, the relative af-
finities predicted for Exd-Scr binding to these two sites are
similar, consistent with previous Kd measurements (33).
Next, we attempted to identify two functionally validated Exd-

UbxIa binding sites in the Distalless minimal element (DME): a
noncanonical site previously hypothesized to have a 3-bp spacer
between the two ATs [AAATTAAATCAT (spacer underlined)
(34)] and a second site with a conventional 2-bp spacer located
16 bp upstream [GAATTTATG (spacer underlined) (35)]. The
NRLB model for Exd-Ubx consists of only a single binding mode
with a 2-bp spacer. Nevertheless, scanning the DME with this
model identified both of these sites, along with two previously
uncharacterized sites (Fig. 5B). We conclude from this that the
Exd-UbxIa heterodimer is likely to bind both sites in the same
configuration [AAATTAAATCAT (spacer underlined)], and
that it is hard to draw correct conclusions about structural
mechanism based only a handful of distinct binding sites.
We extended this analysis to assess how well the Exd-Hox NRLB

models (SI Appendix, Fig. S8) identify a total of 96 experimentally

A

B

ATF4

Fig. 4. NRLB can identify multiple TF complexes in a single sample. (A, Left) Energy logo representation (19) for a single-mode dinucleotide NRLB model fit to
R1 SELEX-seq data for Exd-Pb from Slattery et al. (13). (A, Right) Energy logos for two modes from a three-mode dinucleotide NRLB model fit to the same
data. (B) Energy logos for all modes from a three-mode dinucleotide NRLB model fit to R1 SELEX-seq data for a mixture of ATF4 and C/EBPβ.
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Fig. 5. NRLB predicts functional binding sites in D. melanogaster enhancers. (A) Relative affinities for the fkh250 and fkh250con regulatory elements as predicted
by NRLB models for four different Exd-Hox heterodimers. (B) Chart showing the relative affinities of Exd-UbxIa as predicted by an NRLB model (y axis) across the
DME (x axis). The top binding sites identified by the model (numbered with sequences indicated) have both been verified previously (34, 35). Gray and red indicate
forward and reverse strands, respectively. (C) Precision-recall curve for Hox and Exd-Hox models (blue line), consensus matching methods (gray “+”), and a
random classifier (gray dashed line) when identifying 96 functionally validated binding sites across 21 curated D. melanogaster enhancer elements. IUPAC, In-
ternational Union of Pure and Applied Chemistry. For all analyses, NRLB models were trained on R1 SELEX-seq data from Slattery et al. (13) and are shown in SI
Appendix, Fig. S8. In A and B, all relative affinities have been rescaled to highest-affinity sequence in the D. melanogaster genome.
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validated monomer and heterodimer binding sites for seven Hox
factors in 21 enhancer elements reported in the literature (36)
(Dataset S3). To account for unobserved variation in local free
protein concentration from enhancer to enhancer, we assumed
that the highest scoring sequence in any particular enhancer is
bound at the same (nonsaturating) level. A site was classified as
“bound” whenever its affinity was greater than a certain fraction
of the highest-affinity site in the same enhancer; this fraction, in
turn, was treated as a variable threshold. According to a precision-
recall curve constructed by treating the regions immediately sur-
rounding binding sites as positive and the remaining regions in
the elements as negative (Methods, Fig. 5C, and SI Appendix, Fig.
S16), NRLB substantially outperforms matches to the Hox con-
sensus site TTWATK distilled from bacterial-one-hybrid assays
(37) and the general Exd-Hox consensus TGAYNNAY derived
from our previous work (13). Importantly, and as shown for a
specific example below, although we treat any binding site pre-
dicted by NRLB that was not confirmed in the literature as a
false-positive result, these sites might be functional; therefore,
the performance shown in Fig. 5C is a lower bound.

Detection and Validation of Ultra-Low-Affinity Binding Sites. Recent
studies have demonstrated that low-affinity binding sites play
important roles in vivo in regulating gene expression (1, 2). We
hypothesized that other low-affinity sites that cannot be identi-
fied using existing approaches and have not been experimentally
validated may also contribute to regulation. We therefore reex-
amined two shavenbaby (svb) enhancers, E3N and 7H, where
low-affinity Exd-Ubx binding sites are required to drive robust
and specific gene expression in D. melanogaster embryos (1).
Significantly, these sites could not be identified using oligomer-
enrichment-based affinity tables (1, 13). Using the NRLB model
trained on R1 data for Exd-UbxIVa (SI Appendix, Fig. S8), we
identified the three previously validated sites in E3N and four
additional sites (Fig. 6A); in 7H, we identified two previously
validated sites and several additional sites (SI Appendix, Fig.
S17A). To verify the newly identified sites, we first used in vitro
binding assays to compare the ability of the nonconsensus E3N
WT site 2 sequence to bind Exd-UbxIVa with sites that NRLB
predicts to be high affinity or to have an affinity in the non-
specific range. As predicted, we found that Exd-UbxIVa binds to

A B D

C

Fig. 6. Functional validation of ultra-low-affinity sites predicted by NRLB. (A) Chart showing the relative affinities of Exd-UbxIa as predicted by an NRLB
model (y axis) across the shavenbaby (svb) enhancer element E3N in D. melanogaster (x axis). Gray and red indicate forward and reverse strands, respectively.
Sites indicated by a green checkmark were functionally validated in a previous study (1). Numbers correspond to the to the order in which sites were mutated.
(B) Gel from an EMSA testing the ability of three sequences to bind Exd-UbxIVa (bands indicated by red arrows) in vitro. The WT sequence corresponds to site
2 in A. An NRLB model for Exd-UbxIVa was used to design additional sequences (Dataset S2) that were predicted to have nonspecific (NS) and near-optimal
(High) binding affinity. (C) Expression (white) of E3N::lacZ reporter constructs where the binding sites identified in A were sequentially mutated. WT indicates
the WT E3N enhancer element, while site 1, site 1-2, etc. indicate the mutations of site 1, sites 1 and 2, etc. (D) Comparison between the NRLB predicted
cumulative affinities for Exd-UbxIVa (x axis) and log10 reporter expression level (y axis) for every reporter construct (labels) as quantitated from C. Each point
represents the reporter expression level of a single embryo (Methods). The blue line denotes the result of a linear model fit. Mutation of sites 1 and
2 demonstrates statistically significant changes in reporter intensity (Mann–Whitney U test). For all analyses, NRLB models were trained on R1 SELEX-seq data
for Exd-UbxIVa from Slattery et al. (13) and are shown in SI Appendix, Fig. S8.
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both the high-affinity and WT sequences but fails to bind the
nonspecific sequence (Fig. 6B).
Finally, we tested the contribution of several predicted low-

affinity sites in E3N and 7H to enhancer activity by sequentially
mutating them and measuring reporter gene expression in vivo
(Methods, Fig. 6C, SI Appendix, Fig. S17B, and Dataset S5).
These assays confirm that the newly discovered low-affinity
binding sites in both the E3N and 7H elements contribute to
expression (Fig. 6D and SI Appendix, Fig. S17C; P = 0.001 and
P = 0.045, respectively, Mann–Whitney U test). The 7H en-
hancer shows evidence of saturation (SI Appendix, Fig. S17C),
consistent with previous results (1). Despite the demonstrated
ultra-low affinity of the individual binding sites in the E3N en-
hancer, we found a strong quantitative relationship (R2 = 0.86,
P < 2.2 × 10−16) between expression level as quantified from the
2D embryonic reporter expression pattern and the cumulative
binding affinity of the enhancer as predicted by the NRLB model
for Exd-Ubx (Fig. 6D). Unlike for E3N, transcriptional activa-
tion by the 7H enhancer saturates at high levels of Exd-Ubx
binding (1); similarly good predictions from a DNA sequence
could be made for 7H using a simple two-parameter model that
accounts for this saturation (SI Appendix, Fig. S18).
Assuming clusters of binding sites to contribute additively to

enhancer activity was previously successful in predicting how
enhancer activity is modified by mutations (38). Significantly, our
computational model was able to predict functional ultra-low-
affinity binding from a DNA sequence alone and provide an
affinity estimate that correlates well with in vivo expression level.

Discussion
We designed NRLB to maximize the amount of information that
can be derived from a set of millions of DNA ligands sequenced
after a single round of in vitro selection. NRLB estimates model
parameters through a maximum likelihood estimation (MLE)
approach that considers all possible binding sites within each
ligand. This allows sensitive and accurate quantification of DNA
binding specificity over the full range (several orders of magni-
tude) of binding free energy, from optimal to nonspecific, without
any prior information. Our MLE framework embeds a biophysi-
cally interpretable model of protein–DNA interaction within a
statistical model of the complete set of sequencing reads sam-
pled in each experiment. The resulting software tool allows us to
perform near-optimal quantification of in vitro protein–DNA
interaction specificity for all eight Drosophila Hox proteins and
Exd-Hox complexes, as well as dozens of human TFs in the context
of this paper, and should facilitate the creation of a comprehensive
resource.
Our general methodology can be used to build a sequence-to-

affinity model for any TF for which SELEX data are currently
available (11–14, 23). Once learned, these models can transform
an organism’s genome into a high-resolution (1-bp) affinity
landscape to efficiently find biologically relevant binding sites in
regulatory DNA. NRLB predictions are sufficiently accurate that
further validation of these sites using tedious in vitro binding
assays of TF-DNA affinity, such as traditional EMSAs, may no
longer be required. It is now possible to imagine accurate quanti-
tative characterization of DNA binding over the full affinity range
for all TFs from any organism whenever high-quality SELEX data
are available. The fact that we can deal with very large footprint
sizes should also make it possible to systematically analyze coop-
erativity for complexes of two or more TFs for which SELEX li-
braries are available (14, 39). The multiple binding mode func-
tionality in the current implementation should, in principle, allow
NRLB to capture both alternative complexes that can form within
the same mixture of TFs and alternative configurations (e.g., rel-
ative orientation, internal spacers) with which a given multi-TF
complex may bind.

TF-DNA binding models are typically assessed in terms of
their ability to predict in vivo ChIP-seq peaks. We believe this is
not a sufficiently rigorous test, because peak prediction is a quali-
tative task and does not account for binding in the low-affinity
range. Specifically, NRLB performed similarly to DeepBind on
the qualitative task of predicting ChIP-seq binding peaks; by
contrast, the NRLB model for the human Max protein dramat-
ically outperformed the corresponding DeepBind model for the
quantitative task of predicting MITOMI-derived quantitative
measures of affinity. Thus, the ChIP-seq peak classification
performance of a model cannot be used to assess how well it
quantifies binding affinity. The unprecedented performance of
NRLB in predicting functional low-affinity sites in vivo suggests
that NRLB will allow the identification of the presence, gain, or
loss of binding sites in regulatory DNA with unprecedented
sensitivity and accuracy, marking a significant step forward in the
identification of noncoding polymorphisms relevant to human
disease (40, 41) and evolution (42).

Methods
Protein Expression and Purification. cDNA clones for human C/EBPβ and
ATF4 were obtained from the Dharmacon mammalian clone collection. The
full-length protein-coding regions were cloned into pet expression vectors
containing a C-terminal His-tag. Proteins were expressed in competent cells
supplying additional rare tRNAs (RosettaTM DE3; Novagen) and purified
using TALON Metal Affinity Resins (Clontech). For p53, WT (amino acids 1–
393) and the C-terminal truncated (Δ30, amino acids 1–363) p53 proteins
were expressed and purified as previously described (25).

SELEX-Seq and Library Preparation. EMSAs for the human bZIP proteins and
extraction of bound DNA were performed as described previously (13, 21).
Purified bound DNA was amplified using a 15-cycle PCR protocol using
Phusion polymerase (New England Biolabs) and overhang primers adding
the Illumina adapter sites. During each round, a unique Illumina identifier
was added in a five-cycle PCR assay, for 20 cycles of PCR in total. The indexed
libraries were gel-purified as described previously (13, 21). R0 and R1 indexed
experiments were pooled and sequenced using the v2 high-output 75 cycles
kit on an Illumina NEXTSeq Series desktop sequencer. R1 SELEX-seq for MAX
protein was performed as described previously (22) and sequenced with Illu-
mina’s HiSeq system at the New York Genome Center.

Hox Protein Purification and EMSA Assays. EMSAs were performed as de-
scribed previously (13). Proteins were purified as His-tagged fusions from
BL21 cells. The UbxIVa isoform was used, and the HM isoform of Hth was
copurified in complex with His-tagged Exd protein. Probe sequences used in
the assay can be found in Dataset S2. Images were taken using a Typhoon
scanner and processed using ImageJ (NIH).
Competitive EMSA. Binding reactions were performed with 50 nM UbxIVa and
200 nM Hm-Exd protein. 32P-radiolabeled probe (2 nM) was used in each
reaction. The concentrations of low- and high-affinity competitor probes
ranged from 2 to 781 nM. Normalized data (fraction bound) from the
competition EMSAs (Dataset S2) were fit to competitor concentrations with
a sigmoidal dose–response curve using nonlinear least squares with the
appropriate start conditions (43). The reported IC50 errors are fit-derived
uncertainties. The data and dose–response curves were rescaled such that
the parameter b = 1 (compare equation 7 of ref. 43).
E3N WT site 2 EMSA. Probe (6 nM) was used for the binding reactions. HM-Exd
was used at a concentration of 500 nM. UbxIVa concentration ranged from
100 to 500 nM for WT and below nonspecific probes to 30–100 nM for the
increased affinity probe.

Fly Strains and Crosses. D. melanogaster strains were maintained under
standard laboratory conditions. All enhancer constructs were cloned into the
placZattB expression construct with an hsp70 promoter. Transgenic en-
hancer constructs were created by Rainbow Transgenic Flies, Inc. and were
integrated at the attP2 landing site.

Embryo Manipulations. Embryos were raised at 25 °C and were fixed and
stained according to standard protocols. LacZ protein was detected using an
anti–β-Gal antibody (1:1,000; Promega). Detection of primary antibodies was
done using secondary antibodies labeledwith Alexa Fluor dyes (1:500; Invitrogen).
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Microscopy. Each series of experiments to measure protein levels was per-
formed entirely in parallel. Embryo collections, fixations, staining, and image
acquisitions were performed side by side in identical conditions. Confocal
exposures were identical for each series and were set to not exceed the
255 maximum level. Series of images were acquired over a 1-d time frame to
minimize any signal loss or aberration. Confocal images were obtained on a
Leica DM5500 Q Microscope with an ACS APO 20×/0.60 IMM CORR lens and
Leica Microsystems LAS AP software. Sum projections of confocal stacks were
assembled, embryos were scaled to match sizes, background was subtracted
using a 50-pixel rolling-ball radius, and plot profiles of fluorescence intensity
were analyzed using ImageJ software (https://imagej.nih.gov/ij/).

NRLB Model of R0 Bias. To parameterize the biases in the initial (R0) library
with probe sequences with an L-bp-long variable region, we maximize the
following likelihood function:

L= ∏
S
f0ðSÞy0ðSÞ.

Here, the product runs over all 4L possible probes S, while y0(S) denotes the
observed count in R0. The predicted frequency of probe S in R0 is given by
f0ðSÞ=w0ðSÞ=Z0, where w0ðSÞ= expðPϕβϕXϕðSÞÞ is the Boltzmann weight

and Z0 =
P

Sw0ðSÞ is the partition function. Our assumption is that the
R0 biases are due to an accumulation of processes (oligomer synthesis,
Klenow double-stranding, and PCR amplification) that are each transla-
tionally invariant within the probe but depend on local sequence context.
Assuming independence between the successive positions along the probe
in each process leads naturally to the log-linear (i.e., multiplicative) form of
the R0 bias model above; this form is also mathematically convenient, as it
enables dynamic programming. The set of model features ϕ encompasses all
oligomers of length k (or “k-mers”). Xϕ(S) represents the number of times k-
mer ϕ occurs in sequence S, taking into account k − 1 flanking bases up- and
downstream of the variable region on the forward strand. Z0 is computed
using dynamic programming techniques. We fit the model parameters βϕ by
maximizing the multinomial likelihood L(β) using the limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (44). The optimal k
is selected using cross-validation. Further information is provided in SI Ap-
pendix, Supplemental Methods.

NRLB Model of R1 Probe Selection. To infer the protein-DNA recognition
model based on the trends seen in the selected (R1) library, we maximize the
following likelihood function:

L= ∏
S
f1ðSÞy1ðSÞ.

Again, the product runs over all 4L possible probes S, while y1(S) denotes
the observed count in R1 (or a later round, if necessary). The predicted
frequency of probe S in R1 is given by f1ðSÞ=w1ðSÞ=Z1, where
w1ðSÞ= f0ðSÞ  ð

P
m

P
v ½eΔΔGðSv Þ=RT �+ eβns Þ; here, the additional sum is over

binding modes m and Z1 =
P

Sw1ðSÞ, the partition function. The views v now
include both the forward and reverse orientation and can extend into the
up- and downstream regions flanking the variable region. While the com-
bined length of the variable region and relevant flanking regions is un-
limited in principle, our current code uses an efficient binary representation
of a DNA sequence that limits it to 32 bp. As with NRLB’s R0 bias model, the
partition function Z0 is evaluated using dynamic programming techniques.
We fit the model parameters by maximizing the multinomial likelihood L(β)
using L-BFGS (44). Due to the redundant parameterization of the model, the
likelihood is invariant to changes in the parameters in certain directions (the
“null space”). Different model fits can be compared by projecting out
components in this null space. Further information is provided in SI Ap-
pendix, Supplemental Methods.

NRLB Model Construction. Various settings were used to construct the NRLB
models used in this study; a detailed summary can be found in Dataset S1. All
individual NRLB model fits are unseeded and start from all parameters set
equal to zero. Further optimization is achieved by shifting the free energy
parameters of converged models at all positions by ±1 bp and refitting.
Optionally, dinucleotide parameters, initially set to zero, are introduced for
the best mononucleotide model fit. When multiple binding modes are used,
only a single mode is learned initially and additional modes are added sequen-
tially. Model footprints were increased until the additional parameters were
uninformative. In general, models with the highest likelihood were chosen.
Hox data. For Hox monomers, 13-bp footprints were considered to account for
four additional flanking bases on either side of the 5-bp “core” region from

Slattery et al. (13). For Exd-Hox heterodimers, 18-bp footprints were con-
sidered for the Exd-Hox modes to account for three additional flanking
bases on either side of the 12-bp core region defined by Slattery et al. (13).
Multimode models were manually selected that contained the largest
number of interpretable modes representing Exd monomer, Hox monomer,
and Exd-Hox heterodimer binding with the smallest footprint size.
Max data. Fourteen base pairs was chosen as the footprint size for fits to HT-
SELEX and SELEX-seq data, as it appeared to capture all of the specificity.
However, for fits to SMiLE-seq data, models with 8-bp footprints have the
best likelihood, as the 32-bp limitation of our code prevents fittingmore than
1 bp into the flanking regions.
ATF4 and C/EBPβ data. Fourteen base pairs was chosen for the model footprint
size as it appeared to capture most of the specificity. Multimode fits were
used on the C/EBPβ dataset to remove additional sequence bias.
p53 data. Twenty-four base pairs was chosen as the footprint size as it
appeared to capture all of the specificity. Fits to the WT p53 dataset required
three binding modes to fit to the data and produce a viable motif.

NRLB Model Construction for HT-SELEX Data. NRLB models were built for 30 of
the 35 HT-SELEX datasets used in the DeepBind study (30) (European Nu-
cleotide Archive identifiers ERP001824 and ERP001826). Of the five that
were excluded, three did not have R0 data (BHLHE41, CTCF, and PRDM1),
while two others used variable regions longer than 32 bp (ELK4 and HNF4A),
the limit imposed by our current implementation of NRLB. R0 bias models
were built for each unique probe design; we used 2-mer models as these had
robust cross-validation performance for most TFs (R0 library size for HT-
SELEX is vastly smaller than SELEX-seq libraries). We built selection models
with mononucleotide features and nonspecific binding. For all TFs, models
were constructed for footprint sizes from 8 to 15 bp and a maximum overlap
with the constant flanks of 0–5 bp (a total of 48 hyperparameter combina-
tions). Longer footprints were tested if there appeared to be additional
specificity outside the 15-mer (EBF1: 8–16 bp, NFE2: 8–17 bp, PAX5: 8–19 bp,
and ZNF143: 8–20 bp). In probes with a 30-bp variable region, the overlap
with the flanking regions was restricted to 1 bp. Reverse complement sym-
metry was enforced only for factors from the following TF families: bHLH
(45), bZIP (28), and AP-2 (46) (Dataset S3). Sequence bias frequently pro-
duced suboptimal models (compare SI Appendix, Fig. S11A), and it was
therefore necessary to employ multiple binding modes; all modes shared the
same footprint length and symmetry status. In some cases, contaminants
and/or poor enrichment forced the use of later round data (compare SI
Appendix, Fig. S11B); in these cases, later rounds were treated in the same
way as R1 data. Unlike other factors, Max was fit using criteria designed to
align its model with that derived from SELEX-seq data (Dataset S1).

Selection of HT-SELEX Models. As noted by others (30), HT-SELEX datasets (23)
can be subject to contamination and sequence bias (compare SI Appendix,
Fig. S11). Consequently, simply using likelihood as the criterion for selecting
the best R1 single-mode model from among all footprint and flank hyper-
parameter combinations discussed above often yields motifs that are in-
correct. To automate the selection of an appropriate model for each TF in a
way that does not consider classification performance on ChIP-seq data, we
settled on the following procedure. First, we defined a “viable” model as
one that satisfied these criteria: (i) The highest-affinity sequence matches
the relevant consensus sequence found in literature up to a 1-bp mismatch
(compare SI Appendix, Fig. S11B and Dataset S3); (ii) the model contains at
least three consecutive positions of considerable specificity ([ΔΔGmax −
ΔΔGmin]/RT > 3 for mononucleotide features) (compare SI Appendix, Fig.
S11C); and (iii) if multiple binding modes were fit simultaneously, only the
primary mode (the one with the highest relative affinity) is used. Next,
starting with R1 data for a given TF, single-mode models for each footprint
size and flank hyperparameter combination that were deemed viable were
ranked by likelihood. If no viable models were found, the number of binding
modes was incremented by one and the process was repeated. If no viable
models were found using three binding modes, the enrichment round was
incremented by one and the number of binding modes was reset to one. The
first viable motif thus selected for each TF was used in all subsequent analyses.

Visualization of Dinucleotide Models.Models with dinucleotide features were
summarized in terms of the model-predicted relative affinity of all se-
quences a single point mutation away from the highest-affinity sequence
and visualized as an energy logo (19), which was created using the Log-
oGenerator tool from the REDUCE Suite (reducesuite.bussemakerlab.org).
The highest-affinity sequence was determined using a tailor-made dynamic
programming algorithm.
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Observed and Predicted Sequencing Rate Comparisons. These comparisons
assume that the observed SELEX read counts follow a Poisson distribution
whose rate parameter λ (normalized for library size) is determined by the
model in question. As such, for a given probe, the predicted sequencing rate
and variance are both λ. In practice, there are many more possible SELEX
probes than reads, resulting in most reads never being observed (or only
once), making it impossible to compute the observed sequencing rate and
variance for each probe. To practically compare the observed sequencing
rate, we aggregate probes by their model predicted sequencing rates λ.
Computing the observed sequencing rate then requires knowledge of the
number of probes and their total sequenced count within each bin.
Depending on the dataset and model, slight variations in the computation
of the observed sequencing rate are required. Once computed, comparing
observed and predicted sequencing rates is trivial.
R0 bias models. Predicted sequencing rates were explicitly computed for the
entire universe of 416 unique probes for both the NRLB R0 bias model and
the Markov model method of Slattery et al. (13). To predict these rates, the
Java code underlying the R/Bioconductor package SELEX version 1.6.0 was
used to build and run a fifth-order Markov model on R0 SELEX-seq data
from Slattery et al. (13). The existing NRLB Java framework was used to do
the same. Further analysis computed the the number of probes observed
twice (n2), once (n1), or not at all (n0) in each bin and compared the ratios n1/
n0 and n2/n0 with expectation. For Poisson random variables, the expected
value of these ratios is equal to λ and λ2/2, respectively.
HT-SELEX R1 comparisons. In general, the exact enumeration technique used for
the R0 analysis described above is not feasible for most widely used SELEX
library designs. To avoid the need to explicitly evaluate the sequencing rates
of all probes, an adaptive version of the Wang–Landau algorithm (47) was
used to compute an approximate density of states (DOS) for NRLB and
DeepBind algorithms trained on HT-SELEX data. This allowed us to achieve
unbiased estimates of the number of probes in each sequencing rate bin. As
inputs, the Wang–Landau algorithm used the raw DeepBind probe scores,
the probe binding affinity as estimated only by the raw NRLB binding model,
or the overall NRLB probe score f1(S) (which includes the R0 bias model).

Prediction of R1 Oligomer Counts. The R/Bioconductor package SELEX version
1.6.0 (bioconductor.org/packages/SELEX) was used to determine the ob-
served R1 count for all 10mers. For each 10mer occurring at least 100 times, a
predicted count was computed by summing the predicted frequency of all
probes containing it at any offset and then multiplying by the total number
of reads in R1. Observed and predicted count values were compared using
a linear fit.

Scoring Genomic Sequences with NRLB. For an NRLB model with footprint K
and a target sequence of length L, relative affinity scores were computed at
all 2(L − K + 1) views in the forward and reverse directions. If included, the
nonspecific binding term inferred on SELEX-seq data was rescaled by explicitly
considering the effective length of the DNA ligands in each technology,
without adjustable parameters. Total affinity for the target sequence is the
sum of all affinity contributions. ΔΔG/RT for the target sequence is the
logarithm of this sum.
Exd-Hox analysis. Dinucleotide NRLB models (18-bp, single-mode) for Exd-
UbxIVa and Exd-Scr were truncated to the 12-bp central core region (13),
and then used to score all possible 12-mers (compare SI Appendix, Fig. S5).
D. melanogaster enhancer element analysis. All relative affinity predictions were
rescaled by the highest-affinity sequence in the D. melanogaster genome as
predicted by the same model (compare Figs. 5 A and B and 6A and SI Ap-
pendix, Fig. S17A).

Scoring Sequences with DeepBind. DNA sequences were scored using the
v0.11 scoring tool available at tools.genes.toronto.edu/deepbind/download.
html and the interactive database located at tools.genes.toronto.edu/
deepbind/. The raw score was used in further analyses, as this value corre-
sponds to ΔΔG/RT. To construct the histograms required for the analysis in SI
Appendix, Figs. S13 and S15, we modified the C code of the DeepBind
scoring tool to implement the Wang–Landau algorithm (47).

Comparison with MITOMI Binding Free Energy.MITOMI ligand sequences were
scored using NRLB and DeepBind models to obtain predicted ΔΔG/RT values
as described above, which were then compared with MITOMI observed ΔΔG/
RT values using a linear fit. Scores were shifted such that the target sequence
with the highest score was set to ΔΔG/RT = 0.

ChIP-Seq Peak Classification. NRLB and DeepBind models for 30 TFs in the HT-
SELEX dataset (Dataset S3) were compared using AUCmetrics. For NRLB, only

the primary binding mode was used to score sequences, even if multiple
binding modes had been used during the fit to HT-SELEX data. Positive and
negative sets were constructed in three different ways: (i) The “DeepBind
method” used the same 500 positive and 500 shuffled negative sequences
derived from ENCODE ChIP-seq datasets as (30) for each TF, (ii) the “ENCODE
Top 500 method” used the same ENCODE ChIP-seq datasets as Alipanahi
et al. (30) but restricted the analysis to the 500 highest peaks, and (iii) the
“ENCODE Bottom 500 method” used the 500 lowest peaks among those
with a significant quality value (qValue). For the last two methods, positive
sequences were defined as a 101-bp window centered around the midpoint
of each peak; following Bell et al. (48), for each positive sequence, two
corresponding negative sequences were defined as a 101-bp window cen-
tered exactly one peak’s width upstream or downstream of the peak mid-
point. Since this yields 500 positive and 1,000 negative sequences, we use
area under the precision-recall curve to quantify classification performance.

Quantitative Validation of HT-SELEX Models. Quantitative comparisons for
27 of the 30 NRLB and DeepBind models used in the ChIP-seq classification
task were run on R1 HT-SELEX data from the more deeply sequenced
technical replicate (24) of the original dataset (23) (European Nucleotide
Archive identifier PRJEB14744). The three models that were excluded did not
have R1 data in this newly sequenced replicate (E2F1, ELF1, and SP1). For the
comparisons, it was unknown how much of the flanking regions the
DeepBind model was trained on; to account for this, all probe scores were
computed, including 10-bp flanking regions. In the analyses below, either
the raw DeepBind probe scores or the log of the total probe binding affinity
as predicted by the reduced NRLB binding model (no R0 bias) was used.
Density plots. The predicted DOS was computed using the Wang–Landau al-
gorithm (discussed above). The observed R0 and R1 histograms were com-
puted by binning the observed reads using the score of the respective model.
R0/R1 enrichment. The binned counts from the density plots were used to
compute the log ratio of the R1 and R0 counts (y axis; enrichment) and
compared with the expected enrichment (x axis; computed model score). As
there is an overall scaling factor between the model scores and the observed
enrichment that is unknown, the computed enrichment values are rescaled
so as to minimize the root-mean-square deviation between observed and
predicted enrichment.
Observed/expected sequencing rate. The binned counts and the predicted DOS
from the density plots were used to compute the observed/exected se-
quencing rate following the method described above. For the final, optimal
(full) NRLB model comparison, the NRLB model with the R0 bias term was
used to compute a probe score only over the variable region and the flank
length the model was trained on.

Identification of Validated Hox Binding Sites. We curated 96 functionally
validated Hox and Exd-Hox binding sites in 21 different enhancer elements in
D. melanogaster based on available reporter data from 31 studies (36)
(Dataset S4). The genomic context of a binding site was determined based
on the most minimal enhancer element used in the reporter assay, and
genomic coordinates were standardized to release 5 (dm3) of the D. mela-
nogaster genome using DNA sequence information reported in the studies.
Partial matches to the entire validated binding site sequence were used to
identify binding site offsets within the enhancer elements. To account for
variation in the position of the 12-bp core binding region within NRLB
models, and for experimental error in identifying the true location of the
binding site within the enhancer, any model-predicted site overlapping a
region extending K − 1 nucleotides up- and downstream of an experimen-
tally validated binding site was considered a match, where K denotes the
footprint of the model. Any model-predicted site outside of this extended
region was considered a false-positive result.

Enhancer elements were scored using mononucleotide and dinucleotide
NRLB models as described above. By default, the appropriate Hox monomer
model (SI Appendix, Fig. S8) was used unless the study stated that both Exd
and Hox regulated the target; if so, the appropriate Exd-Hox heterodimer
model among the multiple binding modes in the model was used (SI Ap-
pendix, Fig. S8 and Dataset S4). To account for variations in local protein
concentration, all affinities within an enhancer element were normalized to
the highest-affinity sequence in the particular enhancer (resulting in the
normalized affinities varying between 0 and 1 for all sites in all enhancers).
Potential binding windows in the element were considered functionally
important if their normalized affinity was at or above a threshold T. Pre-
cision and recall were computed for all enhancer elements for all values of T
between 0 and 1. A similar analysis was performed to assess the perfor-
mance of sequence gazing methods. The consensus TTWATK was used for
Hox sites, and TGAYNNAY was used for Exd-Hox sites; the former was de-
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rived by us from bacterial one-hybrid results (37), and the latter was adopted
from the method of Slattery et al. (13). Sites were deemed functional if they
matched the consensus. In the absence of a thresholding parameter, only a
single precision and recall pair was computed.

Reporter Assay Analysis. The significance of potential low-affinity sites was
established using Mann–Whitney U tests on the recorded intensities (Dataset
S5). The cumulative affinity of the various E3N and 7H sequences used in the
reporter assays was computed by summing relative affinity over all views on the
E3N and 7H genomic regions as scored by the single 18-bp heterodimer mode
from a multiple binding mode fit for Exd-UbxIVa (SI Appendix, Fig. S8). The
logarithm base 10 of the E3N reporter intensity values was fit to the rescaled
total affinities using linear regression. The E3N and 7H reporter intensity values
were also fit to a logistic model of expression saturation using nonlinear least
squares; parameter values were checked for significance using an F-test.

Data and Software Availability.
SELEX data. The SELEX-seq data for human Max, ATF4, C/EBPβ, ATF4, and C/
EBPβ; full-length WT p53; and Δ30 p53 generated as part of this study will be
made available in Gene Expression Omnibus (GEO).
NRLB models. The NRLB models for more than 50 TFs described here (SI Ap-
pendix, Figs. S7, S11, and S12), along with tools for scoring any sequence or

genome of interest using an NRLB model, will be made available as an R
package via Bioconductor.
NRLB software. NRLB was implemented entirely in Java. The Java source code
and associated R functions for visualizing models and scoring sequences will
be made available via GitHub. As designed, NRLB can be run on any machine
that has Java installed, but will run slowly unless multithreading is enabled.
Runtimes are also highly dependent on the number of reads and the com-
plexity of themodel; a single-mode, nucleotide-only model forMAX fit to HT-
SELEX data (∼63 thousand reads) can take seconds to fit and uses roughly 2
GB of RAM on a standard MacBook, while a three-mode dinucleotide model
for Exd-Pb on SELEX-seq data (∼19 million reads) can take more than 10 h on
a server with Dual Xeon Processors and 24 GB of RAM.
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